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Abstract

We review the status of the fourth-order (quartic in the spacetime curvature) terms induced by superstrings/M-
theory (compactified on a warped torus) in the leading order with respect to the Regge slope parameter, and 
study their (nonperturbative) impact on the evolution of the Hubble scale in the context of the four-dimensional 
FRW cosmology. After taking into account the quantum ambiguities in the definition of the off-shell superstring 
effective action, we propose the generalized Friedmann equations, find the existence of their (de Sitter) exact 
inflationary solutions without a spacetime singularity, and constrain the ambiguities by demanding stability and 
the scale factor duality invariance of our solutions. The most naive (Bel-Robinson tensor squared) quartic terms 
are ruled out, thus giving the evidence for the necessity of extra quartic (Ricci tensor-dependent) terms in the off-
shell gravitational effective action for superstrings. Our methods are generalizable to the higher orders in the 
spacetime curvature. 

1. Introduction

The homogeneity and isotropy of our Universe, as well as the observed spectrum of density perturbations, are 
explained by inflationary cosmology [1, 2]. Inflation is usually realized by introducing a scalar field (inflaton) and 
choosing an appropriate scalar potential. When using Einstein equations, it gives rise to the massive violation of 
the strong energy condition and the exotic matter with large negative pressure. Despite the apparent simplicity 
of such inflationary scenarios, the origin of their key ingredients, such as the inflaton and its scalar potential, 
remains obscure. 

Theory of superstrings is the leading candidate for a unified theory of Nature, and it is also the only known 
consistent theory of quantum gravity. It is therefore natural to use superstrings or M-theory for the construction 
of specific mechanisms of inflation. Recently, many brane inflation scenarios were proposed (see, e.g., [3] for a 
review), together with their embeddings into the (warped) compactified superstring models, in a good package 
with the phenomenological constraints coming from particle physics (see, e.g., [4]). However, it did not contribute 
to revealing the origin of the key ingredients of inflation. It also greatly increased the number of possibilities up 

to  (known as the string landscape), hampering-specific theoretical predictions in the search for the 

signatures of strings and branes in the Universe. 

The inflaton driven by a scalar potential and its engineering by strings and branes are by no means required. 
Another possible approach can be based on a modification of the gravitational part of Einstein equations by 
terms of the higher order in the spacetime curvature [5]. It does not require an inflaton or an exotic matter, while 
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the specific higher-curvature terms are well known to be present in the effective action of superstrings [6, 7]. 

The perturbative strings are defined on-shell (in the form of quantum amplitudes), while they give rise to the 
infinitely many higher-curvature corrections to the Einstein equations, to all orders in the Regge slope parameter 

 and the string coupling . The finite form of all those corrections is unknown and beyond our control. However, 

it still makes sense to consider the leading corrections to the Einstein equations, coming from strings and branes. 
Of course, any result to be obtained from the merely leading quantum corrections cannot be conclusive. 
Nevertheless, they may offer both qualitative and technical insights into the early Universe cosmology, within the 
well-defined and highly restrictive framework. In this paper, we adopt the approach based on the Einstein 
equations modified by the leading superstring-generated gravitational terms which are quartic in the spacetime 
curvature. We treat the quartic curvature terms on equal footing with the Einstein term, that is, nonperturbatively. 

We consider only geometrical (i.e., pure gravity) terms in the low-energy M-theory effective action in four space-
time dimensions. We assume that the quantum -corrections can be suppressed against the leading -

corrections, whereas all the moduli, including a dilaton and an axion, are somehow stabilized (e.g., by fluxes, 
after the warped compactification to four dimensions and spontaneous supersymmetry breaking). 

Our paper is organized as follows. In Section 2, we review our starting point: M-theory in 11 spacetime 
dimensions with the leading quantum corrections, and the dimensional reduction to four spacetime dimensions. 
In Section 3, we discuss the problem of the off-shell extension of the gravitational part of the four-dimensional 
effective action for superstrings. In Section 4, we review the physical significance of the on-shell quartic curvature 
terms. In Section 5, we prove that it is impossible to eliminate the fourth-order time derivatives in the four-
dimensional equations of motion with a generic metric. The structure of equations of motions for the special 
(FRW) metrics is revealed in Section 6, which contains our main new results. The exact (de Sitter) solutions, 
stability, and duality constraints are also discussed in Section 6. Our conclusion is Section 7. In Appendix A, we 
give our notation and compute some relevant identities. The two-component spinor formalism (for completeness) 
is summarized in Appendix B. 

2. M-Theory and Modified Einstein Equations 

There are five perturbatively consistent superstring models in ten spacetime dimensions (see, e.g., the book [6, 
7]). All those models are related by duality transformations. In this paper, we are going to consider only the 
gravitational sector of the heterotic and type-II strings. In addition, there exists a parent theory behind all those 
superstring models, it is called M-theory, and it is eleven-dimensional [6, 7]. Not so much is known about the 
nonperturbative M-theory. Nevertheless, there are the well-established facts that (i) the M-theory low-energy 
effective action is given by the 11-dimensional supergravity [8], and (ii) the leading quantum gravitational 
corrections to the 11-dimensional supergravity from M-theory in the bosonic sector are quartic in the curvature 
[9–12] (see, e.g., [13] for some recent progress). Our purpose in this section is to emphasize what is not known. 

All the bosonic terms of the M-theory corrected 11-dimensional action read as follows [9–12]:

where  is the 11-dimensional gravitational constant,  is the M2-brane tension given by

where  is a 3-form gauge field of the 11-dimensional supergravity [8], and  is its four-form field strength,  
is the gravitational scalar curvature,  stands for the 11-dimensional Levi-Civita symbol in the Chern-Simons-like 

coupling, while  are certain quartic polynomials in the 11-dimensional curvature. The  is given by

where the  is the 11-dimensional extension of the eight-dimensional Euler density

and the  is the eight-form

where the traces are taken with respect to (implicit) Lorentz indices in eleven space-time dimensions. The (world) 

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)



vector indices are also suppressed in (2.1). 

The -contribution (2.3) is defined modulo Ricci-dependent terms by its derivation [9–12]. The basic reason is the 

on-shell nature of the perturbative superstrings [6, 7], whose quantum on-shell amplitudes determine the 
gravitational effective action modulo field redefinitions. Via the Einstein-Hilbert term, the metric field redefinitions 
contribute to the next (quartic) curvature terms with at least one factor of Ricci curvature. Therefore, some 
additional physical requirements are needed in order to fix those Ricci-dependent terms in the off-shell M-theory 
effective action. 

To match the constraints imposed by particle physics, M-theory is supposed to be compactified to one of the 
superstring models in ten dimensions, and then down to four spacetime dimensions, for example, on a Calabi-Yau 
complex three-fold [6, 7]. Alternatively, M-theory may be directly compactified down to four real dimensions on a 

7-dimensional special  holonomy manifold [14]. The bosonic fields of the action (2.1) are just an eleven-

dimensional metric and a 3-form (there is no dilaton in eleven dimensions). In other words, the 11-dimensional 
action (2.1) is the most general starting point to discuss the M-theory/superstrings compactification. 

In the presence of fluxes, we should consider the warped compactification, whose metric is of the form [15]

where  is the FRW metric in (uncompactified) four-dimensional spacetime (see (5.1) below),  is a metric 

in compactified seven dimensions with the coordinates , , and  is called a warp factor. 

Since we are interested in the gravitational sector of the four-dimensional type-II superstrings, an explicit form of 

the 7-metric  is not needed. In the case of heterotic strings, one has to include the “anomalous” term 

quadratic in the curvature (see below). We put all the four-dimensional scalars (like a dilaton, an axion, and 
moduli) into the matter stress-energy tensor (in Einstein frame), and assume that they are somehow stabilized 
to certain fixed values. In addition, we do not consider any M-theory/superstrings solitons such as M- or D-
branes. After dimensional reduction, the only gravitational terms coming from type-II superstrings in four 
dimensions are given by

where we have introduced the Einstein coupling  in four dimensions, and the four-dimensional counterpart  of 

 in (2.3), ,

The relation between the coupling constants  and  is given by

where we have introduced the Kaluza-Klein (KK) compactification scale  and the average warp 

factor  (with an integer weight )

We also find

of mass dimension . For instance, when substituting the Planck scale  and , and 

ignoring the warp factor, , we get the incredibly small (and, in fact, unacceptable—see Section 6) value

As regards the four-dimensional heterotic strings, the action (2.7) is to be supplemented by the term [16, 17]

where

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)



again modulo Ricci-dependent terms. 

The gravitational action is to be added to a matter action, which lead to the modified Einstein equations of motion 
(in the type-II case, for definiteness)

where  stands for the energy-momentum tensor of all the matter fields (including dilaton and axion). 

Due to the ambiguities in the definition of the -polynomial, it is also possible to replace it by

where we have introduced the Weyl tensor in four dimensions [18], which is the traceless part of the curvature 
tensor—see Appendices A and B. 

3. Going Off-Shell with the Curvature Terms

There are about  Ricci-dependent terms in the most general off-shell gravitational effective action that is 

quartic in the curvature. It also means about  new coefficients, which makes the fixing of the off-shell action to 

be extremely difficult. The quartic curvature terms are thus different from the quadratic curvature terms, present in 
the on-shell heterotic string effective action (2.13), whose off-shell extension is very simple (see below). It is, 
therefore, desirable to formulate some necessary conditions that any off-shell extension has to satisfy. 

(i) The first condition is, of course, the vanishing of all extra terms (i.e., beyond those in (2.8)) in the Ricci-flat case 
[19, 20]. The perturbative superstring effective action is usually deducted from the superstring amplitudes, 
whose on-shell condition is just the Ricci-flatness. In the alternative method, known as the nonlinear sigma-
model beta-function approach, the Ricci-dependent ambiguities in the effective equations of motion (associated 
with the vanishing sigma-model beta-functions) arise via the dependence of the renormalization group beta-
functions of the nonlinear sigma-model upon the renormalization prescription, starting from two loops (see, e.g., 
[21] for details). 

(ii) Supersymmetry requires all quantum bosonic corrections to be extendable to locally supersymmetric 
invariants. It can be made manifest in four spacetime dimensions, where the off-shell superspace formalism of 

 supergravity is available [22]. The Weyl tensor, Ricci tensor and scalar curvature belong to three different 

 superfields called ,  and , respectively, while the first superfield is chiral. (We use the two-

component spinor notation [22], —see Appendix B.)   In particular, the Weyl tensor  appears in 

the first order of the  superspace chiral anticommuting coordinates  as

so that the  terms (with all curvatures being replaced by Weyl tensors) are easily supersymmetrizable in 

superspace as

The  terms in (2.16) are also extendable to the manifest superinvariant

where we have introduced the supervielbein densities,  and , in the chiral and central superspaces, 

respectively (see [22] for details). 

Those invariants were extensively studied in the past because they naturally appear as the possible 
counterterms (with divergent coefficients) in quantum four-dimensional supergravity (see, e.g., [23, 24]). In 
superstring theory, one gets the same structures, though with finite coefficients (see, e.g., [25, 26]). Thus, in four 
dimensions, the structure of the on-shell superstrings quartic curvature terms is fixed by local  supersymmetry 

alone, up to normalization. 

(iii) The absence of the higher-order time derivatives is usually desirable to prevent possible unphysical solutions 
to the equations of motion, as well as to preserve the perturbative unitarity, but it is by no means necessary. As 
is well known, the standard Friedmann equation of general relativity is an evolution equation, that is, it contains 
only the first-order time derivatives of the scale factor [1, 2, 27]. It happens due to the cancellation of terms with 

(2.14)

(2.15)

(2.16)

(3.1)

(3.2)

(3.3)



the second-order time derivatives in the mixed -component of Einstein tensor—see, for example, the appendix 

of [28] for details. It can also be seen as the consequence of the fact that the second-order dynamical 
(Raychaudhuri) equation for the scale factor in general relativity can be integrated once, by the use of the 
continuity equation (3.5), thus leading to the evolution (Friedmann) equation [1, 2]. As regards the quadratic 
curvature terms present in the heterotic case, their unique off-shell extension is given by the Gauss-Bonnet-type 
combination [29, 30]

In the expansion around Minkowski space, , the fourth-order derivatives (at the leading order in 

) coming from the first term in (3.4) cancel against those in the second and third terms [31]. As a result, the 

off-shell extension (3.4) appears to be ghost-free in all dimensions. As regards four space-time dimensions, the 
terms (3.4) can be rewritten as the four-dimensional Euler density (A.7). Therefore, being a total derivative, (3.4) 
does not contribute to the four-dimensional effective action. (Of course, adding Euler densities to the Einstein-
Hilbert term matters in higher (than four) dimensions [32, 33], or with the dynamical dilaton and axion fields [34–

36].) The higher-time derivatives are apparent in the gravitational equations of motion with the quartic curvature 
terms (see also [37]). It is natural to exploit the freedom of the metric field redefinitions in order to get rid of 
those terms. However, in Section 5 we prove that it is impossible to eliminate the fourth-order time derivatives in 
the quartic curvature terms via a metric field redefinition. It may still be possible for some special (like FRW) 
metrics, after imposing the string duality requirement (Section 6). 

(iv) The matter equations of motion in general relativity imply the covariant conservation law of the matter energy-
momentum tensor

By the well-known identity , (2.15) and (3.5) imply

For instance, when  as in (3.4), (3.6) reads

By the use of Bianchi identities for the curvature tensor, we find by an explicit calculation that the left-hand side 
of (3.7) identically vanishes. We believe that (3.6) should be identically satisfied by any off-shell gravitational 
correction  because, otherwise, the consistency of the gravitational equations of motion may be violated. 

Given the quartic curvature terms (2.8), the modified Einstein equations of motion (2.15) are

(v) We may also add the causality constraint as our next condition: the group velocity of ultraviolet perturbations 
on a gravitational background with the higher-curvature terms included must not exceed the speed of light. As 
was demonstrated in [38, 39], the causality condition merely affects the sign factors of the full curvature terms in 

the action, namely, the signs in front of  and  should be positive. It must be 

automatically satisfied by the perturbative superstring quartic corrections (2.8) due to the known unitarity of 

superstring theory, and it is the case indeed—see the identity (A.20—just because . 

Of course, our list is not complete, and it could be easily extended by more conditions, for example, by requiring 
the consistency with black hole physics, gravitational waves, nucleosynthesis, and so forth. For example, in 
Section 6, we impose the scale factor duality as yet another constraint. 

4. On-Shell Structure and Physical Meaning of the Quartic Curvature Terms

The detailed structure and physical meaning of the quartic curvature terms in (2.8) and (2.16) are easily revealed 
via their connection to the four-dimensional Bel-Robinson (BR) tensor [40–43]. The latter is well known in general 
relativity [44–47]. We review here the main properties of the BR tensor, and calculate the coefficients in the 
important identities—see (4.4) and (4.5) in the section below. (Those coefficients were left undetermined in [45–

47]).  

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)



The BR tensor is defined by

whose structure is quite similar to that of the Maxwell stress-energy tensor

(see also Appendix A for more details). 

The Weyl cousin  of the BR tensor is obtained by replacing all curvatures by Weyl tensors in (4.1)—see 

(A.10). The Weyl BR tensor can be factorized in the two-component formalism (see Appendix B)

In this section, we consider all the quartic terms on-shell, that is, modulo Ricci tensor-dependent terms. 
Therefore, we are not going to distinguish between  and  here. The Ricci tensor-dependent additions will be 

discussed in Sections 5 and 6. 

The significance of the BR tensor to the quartic curvature terms is already obvious from superspace (see Section 
3), where the locally  supersymmetric extension of the quartic Weyl terms (2.16) is given by (3.3) whose 

bosonic part is the BR tensor squared due to (4.3). As regards a straightforward proof, see Appendix A and our 
derivation of (A.20) there, which imply

In addition, when using another identity (A.17), (4.4) yields

where we have introduced the Euler and Pontryagin topological densities in four dimensions—see (A.7) and (A.8), 

respectively. 

In addition [40–43, 45–47], the on-shell BR tensor is fully symmetric with respect to its vector indices, it is 

traceless, 

(ii) It is covariantly conserved (though the BR tensor is not a physical current),

and it has positive “energy” density

Equation (4.6) is most easily seen in the two-component formalism (see Appendix B), (4.7) is the consequence of 
Bianchi identities [48], whereas (4.8) just follows from the definition (4.1). 

The BR tensor is related to the gravitational energy-momentum pseudo tensors [45–47]. It can be most clearly 

seen in Riemann normal coordinates (RNCs) at any given point in spacetime. The RNCs are defined by the relations

so that the derivatives of Christoffel symbols read as follows:

Raising and lowering of vector indices in RNCs are performed with Minkowski metric  and its inverse , 

whereas all traces in the last two equations (4.9) and (4.10) vanish

Moreover, there exists the remarkable noncovariant relation (valid only in RNC) [45–47]

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)



where the symmetric Landau-Lifshitz (LL) gravitational pseudotensor [27]

and the nonsymmetric Einstein (E) gravitational pseudotensor [49, 50]

have been introduced in RNC, in terms of Christoffel symbols. 

5. Off-Shell Quartic Curvatures in Cosmology

The main cosmological principle of a spatially homogeneous and isotropic -dimensional universe (at large 

scales) gives rise to the standard Friedman-Robertson-Walker (FRW) metrics of the form [49, 50]

where the function  is known as the scale factor in “cosmic” coordinates ; we use  and 

, while  is the FRW topology index taking values . Accordingly, the FRW metric (5.1) 

admits a 6-dimensional isometry group  that is either ,  or , acting on the orbits , with 

the spatial 3-dimensional sections , , or , respectively. By the coordinate change, , the FRW 

metric (5.1) can be rewritten to the form

which is manifestly (4-dimensional) conformally flat in the case of . Therefore, the 4-dimensional Weyl tensor 

of the FRW metric obviously vanishes in the “flat” case of . It is well known that the FRW Weyl tensor 

vanishes in the other two cases,  and , too [28, 51]. Thus we have

Inflation in an early universe is defined as the epoch during which the scale factor is accelerating [1, 2]

where the dots denote time derivatives, and  is Hubble “constant.” The amount of inflation is given by a 

number of e-foldings [1, 2]:

which should be around  [1, 2]. 

Though the leading purely geometrical (perturbative) correction in the heterotic string case is given by the Gauss-
Bonnet combination (3.4), and thus it does not contribute to the equations of motion in four space-time 
dimensions, the situation changes when the dynamical moduli (axion and dilaton) are included. The effective 
string theory couplings are moduli dependent, which gives rise to a nontrivial coupling with the moduli in front of 
the Gauss-Bonnet term, so that the latter is not a total derivative any more. At the level of the one-loop 
corrected heterotic superstring effective action in four dimensions, the cosmological solutions were studied in 
[34–36]. As regards the realization of inflation in M-theory, see, for example, [52]. 

In the case of type-II superstrings (after stabilizing the moduli) we are left with the quartic curvature terms in the 
four-dimensional effective action (Section 2). Let us address the issue of the higher-time derivatives in the 
general setting. It is quite natural to use the freedom of the metric field redefinitions in string theory in order to 
try to get rid of the higher-time derivatives in the effective action. The successful example is provided by the 
Gauss-Bonnet gravity (Section 3) that we are now going to follow. Let us consider a weak gravitational field

in the harmonic gauge

(4.12)

(4.13)

(4.14)

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)



The linearized curvatures are given by

whereas the Ricci tensor and the scalar curvature in the gauge (5.7) read

(We assign the lower case latin letters to spacetime indices, , and the lower case middle greek 

letters to spatial indices, .)  

As is clear from the structure of those equations, it is possible to form the Ricci terms after integration by parts in 
the quadratic curvature action. As a result, there is a cancellation of all terms with the fourth-order time 

derivatives in the leading order  of the Gauss-Bonnet action (3.4) in all spacetime dimensions, as was first 

observed in [31]. 

Unfortunately, we find that it does not work for the quartic curvature terms, even in four spacetime dimensions, 
as we now going to argue. 

When using the linearized curvature (5.8), the quartic terms (2.8) in four spacetime dimensions have the structure

where we have introduced the notation  and

while all the index contractions above are performed with Minkowski metric. 

Equation (5.10) is not very illuminating, but it is enough to observe that the dangerous terms  and 

 do contribute, and thus lead to the terms with the fourth- and third-order time derivatives in 

the equations of motion, when all  are supposed to be independent. The last possibility is to convert those 

terms into some Ricci tensor-dependent contributions. However, in the harmonic gauge (5.7), getting the Ricci 
tensor requires the two spacetime derivatives to be contracted into the wave operator, as in (5.9), in each 
dangerous term, which is impossible for the quartic curvature terms, unlike their quadratic counterpart because 
any integration by parts in the quartic terms does not end up with a wave operator in each term. The equations 

of motion in the case of -gravity with the FRW metric are explicitly computed in Section 6, as an example.
 

Having failed to remove the higher-time derivatives for a generic metric, one can try to get rid of them for a 
special class of metrics, namely, the FRW metrics of our interest. The simplest example arises when all the 
Riemann curvatures in the quartic curvature terms are replaced by the Weyl tensors, as in (2.16). It also amounts 
to adding certain quartic curvature terms with at least one Ricci factor to the effective action (2.7). This proposal 

is based on the reasonable assumption [53] coming from the AdS/CFT correspondence that the  and 

 spaces seem to be the exact solutions to the (eleven-dimensional) M-theory equations of motion. Of 

course, such assumption is just the sufficient condition, not the necessary one, because there may be many more 
solutions. The substitution  leads to the contributions with three Weyl tensors (from the quartic terms) 

in the equations of motion, which implies no perturbative superstring corrections to the FRW metrics at all 
because of (5.3). 

In Section 6, we find that the scale factor duality requirements allow a family of the generalized Friedmann 
equations coming from the most general quartic curvature terms, with just a few real parameters. 

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)



6. Exact Solutions, Stability, and Duality

Our motivation in this paper is based on the observation that the standard model (SM) of elementary particles 
does not have an inflaton. (The proposal [54] to identify the inflaton with the SM Higgs boson requires its 
nonminimal coupling to gravity, which does not fit to string theory.) In addition, M-theory/superstrings have 
plenty of inflaton candidates but any inflationary mechanism based on a scalar field is highly model dependent. 
When one wants the universal geometrical mechanism of inflation based on gravity only, it should occur due to 
some Planck scale physics to be described by the higher-curvature terms (cf. [5]). 

On the experimental side, it is known that the vacuum energy density  during inflation is bounded from above 

by a (non)observation of tensor fluctuations of the cosmic microwave background (CMB) radiation [55]:

It severely constrains but does not exclude the possibility of the geometrical inflation originating from the purely 

gravitational sector of string theory because the factor of  above may be just due to some numerical 

coefficients (cf. Section 2). 

In this section, we consider the structure of our generalized Friedmann equation with generic quartic curvature 
terms. We get the conditions of stability of our inflationary solutions, and solve the duality invariance constraints 
coming from string theory [56, 57]. 

Due to a single-arbitrary function  in the FRW Ansatz (5.1), it is enough to take only one gravitational equation 

of motion in (2.15) without matter, namely, its mixed -component. As is well known [1, 2], the spatial (3-

dimensional) curvature can be ignored in a very early universe, so we choose the manifestly conformally-flat FRW 

metric (5.1) with  in our Ansatz. It leads to a purely gravitational equation of motion having the form

where  is a polynomial with respect to its arguments:

Here, the sum goes over the integer partitions  of , the dots stand for the derivatives with 

respect to time , and  are some real coefficients. The highest derivative enters linearly at most, . 

The FRW Ansatz with  gives the following nonvanishing curvatures:

where . For example, in the case of the  gravity (3.8), after a straightforward (though quite 

tedious) calculation of the mixed -equation without matter and with the curvatures (6.4), we find

It is remarkable that the fourth-order time derivatives (present in various terms of (3.8)) cancel, whereas the 

square of the third-order time derivative of the scale factor, , does not appear at all in this equation. (Taking 

Weyl tensors instead of Riemann curvatures leads to the vanishing coefficients.)  

Our generalized Friedmann equation (6.2) applies to any combination of the quartic curvature terms in the action, 
including the Ricci-dependent terms. The coefficients  in (6.3) can be thought of as linear combinations 

of the coefficients in the most general quartic curvature action. The polynomial (6.3) merely has  undetermined 

coefficients, that is considerably less than a  of the coefficients in the most general quartic curvature action. 

The structure of (6.2) and (6.3) admits the existence of rather generic exact inflationary solutions without a 
spacetime singularity. Indeed, when using the most naive (de Sitter) Ansatz for the scale factor,

with some real positive constants  and , and substituting (6.6) into (6.2), we get , whose 

coefficient  is just a sum of all -coefficients in (6.3). Assuming the  to be positive, we find an exact solution:

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)



This solution in nonperturbative in , that is, it is impossible to get it when considering the quartic curvature 

terms as a perturbation. Of course, the assumption that we are dealing with the leading correction implies . 

Because of (2.11) and (6.7), it leads to the natural hierarchy

where we have introduced the four-dimensional Planck scale  and the compactification scale . 

The effective Hubble scale  of (6.7) should be lower than the effective (with warping) KK scale  in 

order to validate our four-dimensional description of gravity, that is, the ignorance of all KK modes:

It rules out the naive KK reduction (with ) but still allows the warped compactification (2.6), when the 

average warp factor is tuned

where we have used (2.11) and have estimated  by order . 

The exact solution (6.6) is nonsingular, while it describes an inflationary isotropic and homogeneous early 
universe. (The exact de Sitter solutions in the special case (2.8) were also found in [58–61].) Given the 

expanding universe, the curvatures decrease, so that the higher-curvature terms cease to be the dominant 
contributions against the matter terms we ignored in the equations of motion. The matter terms may provide a 
mechanism for ending the geometrical inflation and reheating (i.e., a graceful exit to the standard cosmology). 

To be truly inflationary solutions, (6.6) and (6.7) should correspond to the stable fixed points (or attractors) [1, 
2]. The stability conditions are easily derived along the standard lines (see, e.g., [62, 63]). When using the 
parameterization

we easily find

Equation (6.3) now takes the form

where the -coefficients are linear combinations of the -coefficients (easy to find). Equations (6.6) and (6.7) are 

also simplified

The solution (6.14) can be considered as the fixed point of the equations of motion (6.2) in a generic case

where we have introduced the notation

Equation (6.15) can be brought into an autonomous form

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)



that is quite suitable for the stability analysis against small perturbations about the fixed points, , 

where . We find

where all the partial derivatives are taken at the fixed point (denoted by ). The fixed points are stable when all 

the eigenvalues of the matrix

in (6.18) are negative or have negative real parts [62, 63]. Then the fixed point is a stable attractor. 

To the end of this section, we would like to investigate how the symmetries of string theory are going to affect 
the coefficients of our generalized Friedmann equation. Here, we apply the scale factor duality [56, 57] by 
requiring our equation (6.2) to be invariant under the duality transformation

This duality is a cosmological version of the genuine stringy T-duality (which is the symmetry of the 
nonperturbative string spectrum), in the case of time-dependent backgrounds. The scale factor duality is merely 
the symmetry of the (perturbative) equations of motion of the background fields. It is used, for example, in the so-
called prebig bang scenario [64] in order to avoid the cosmological singularity. 

In the -parameterization (6.11), the duality transformation (6.20) takes the very simple form

The equations of motion in the form (6.15) are manifestly invariant under , where  is an arbitrary 

constant. 

It is straightforward to calculate how the right-hand side of (6.2) transforms under the duality (6.20) by 
differentiating (6.20). We find

To see how the duality affects the polynomial , we consider the case with the third-order time derivatives, 

motivated by (6.5). We introduce the notation

so that the duality invariance condition reads

The structure of the polynomial  in (6.3), as the sum over partitions of , restricts a solution to (6.24) to be 

most quadratic in :

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)



whose coefficients are polynomials in , of the order being given by their subscripts, that is,

After a substitution of (6.25) and (6.14) into (6.24), we get an over determined system of linear equations on the 
coefficients. Nevertheless, we find that there is a consistent general solution

parameterized by merely five real coefficients . Requiring the existence of the exact solution (6.6), 

that is, the positivity of  in (6.7) yields

As regards the  gravity representing the “minimal” candidate for the off-shell superstring effective action, 

we checked that neither the duality invariant structure (6.15) nor the inequality (6.28) are satisfied by the 
coefficients present in (6.5). We interpret it as the clear indications that some additional Ricci-dependent terms 

have to be added to the  terms or, equivalently, the  gravity is ruled out as the off-shell effective action 

for superstrings. 

Finally, we would like to mention about some possible simplifications and generalizations. 

The last equation (6.4) apparently implies that the Ricci-dependent terms in  should have the factor of . 

Hence it may be possible to completely eliminate both the fourth- and third-order time derivatives in our 
generalized Friedmann equations, though we are not sure that this choice is fully consistent. However, if so, 
instead of (6.24), we would get another duality condition

whose most general solution is simpler:

with merely three, yet to be determined coefficients . 

We would like to emphasize that our results above can be generalized to any finite order with respect to the 
spacetime curvatures in the off-shell superstring effective action because it amounts to increasing the order of 
the polynomial . The list (6.10) can be continued to any higher order in the derivatives. We can now speculate 

about the form of the generalized Friedmann equation to all orders in the curvature. It depends upon whether (i) 
there will be some finite maximal order of the time derivatives there, or (ii) the time derivatives of arbitrarily high 
order appear (we do not know about it). Given the case (i), we just drop the requirement that the right-hand 
side of our cosmological equation (6.2) is a polynomial, and take a duality-invariant function  instead. In the case 

(ii), we should replace the function by a functional, thus getting a nonlocal equation having the form

whose functional  is subject to the nontrivial duality constraint

Imposing simultaneously both conditions of stability and duality invariance leads to severe constraints on the -

coefficients. Hence it also severely restricts the quantum ambiguities in the superstring-generated quartic 
curvature gravity. Finding their solutions seems to be a nontrivial mathematical problem, we would like to 
investigate it elsewhere [65]. 

7. Conclusion

The higher-curvature terms in the gravitational action defy the famous Hawking-Penrose theorem [66–68] about 

the existence of a spacetime singularity in any exact solution to the Einstein equations. As we demonstrated in 

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)



this paper, the initial cosmological singularity can be easily avoided by considering the superstring-motivated 
higher-curvature terms on equal footing (i.e., nonperturbatively) with the Einstein-Hilbert term. 

Our results predict the possible existence of the very short de Sitter phase driven by the quartic curvature terms, 
in the early inflationary epoch. 

Though we showed the natural existence of inflationary (de Sitter) exact solutions without a spacetime 
singularity under rather generic conditions on the coefficients in the higher-derivative terms, it is not enough for 
robust physical applications. As a matter of fact, we assumed the dominance of the higher-curvature gravitational 
terms over all matter contributions in the very early Universe at the Planck scale. However, given the expansion 
of the Universe under the geometrical inflation, the spacetime curvatures should decrease, so that the matter 
terms can no longer be ignored. The latter may effectively replace the geometrical inflation by another matter-
dominated mechanism, thus allowing the inflation to continue substantially below the Planck scale. 

In addition, the number of e-foldings (5.5) is just about one in our scenario based on the quartic curvature terms, 
which makes it difficult to compete with the conventional inflation mechanisms [1, 2]. An investigation of the 
possible “graceful exit” strategies, toward a matter-driven inflation is, however, beyond the scope of the given 

paper. 

The quartic curvature terms are also relevant to the Brandenberger-Vafa cosmological scenario of string gas 
cosmology [69]—see, for example, [63] for a recent investigation of the higher-curvature corrections there. (The 

higher-curvature terms were considered only perturbatively in [63].)  

The higher-time derivatives in the equations of motion may be unavoidable when using the higher-curvature 
terms, but we do not see that they constitute a trouble. 

Gravity with the quartic curvature terms is a good playground for going beyond the Einstein equations. Our 
analysis may be part of a more general approach based on superstrings, including dynamical moduli and extra 
dimensions. 

Appendices

A. Our Notation and Identities

We use the basic notation of [27] with the signature . The (Riemann-Christoffel) curvature tensor is 

given by

in terms of the Christoffel symbols

It follows

The traceless part of the curvature tensor is given by a Weyl tensor:

where we have introduced the Ricci tensor and the scalar curvature

The dual curvature is defined by

where  is Levi-Civita tensor. 

The Euler (E) and Pontryagin (P) topological densities in four dimensions are

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)



respectively. 

The Bel-Robinson (BR) tensor is defined by [40–43]

Its Weyl cousin is given by

The Riemann-Christoffel curvature (modulo Ricci-dependent terms) is most easily described in the Petrov 
formalism [70] by imposing the Ricci-flatness condition . A metric  at a given point in spacetime can 

always be brought into Minkowski form , whereas the curvature tensor components can be 

represented by

where the 3d tensors  and  are symmetric by definition, , and  is 3d Levi-Civita symbol 

normalized by . 

The Ricci-flatness condition implies that  is traceless,  is symmetric, and . It is now natural to introduce a 

symmetric (traceless) complex 3d tensor

and bring it into one of its canonical (Petrov) forms, called I, II, or III, depending upon a number (3, 2, or 1, resp.) 
of eigenvectors of . For our purposes, it is most convenient to use the form I with three independent (complex) 

eigenvectors, so that the real matrices  and  can be simultaneously diagonalized as

in terms of their real eigenvalues. 

(We use the lowercase greek letters to represent vector indices in three (flat) spatial dimensions.)  

It is straightforward to write down any Riemann-Christoffel curvature invariants as the polynomials of their 
eigenvalues (A.13) in the Petrov I form. It is especially useful for establishing various identities modulo Ricci-
dependent terms. We find

so that

Similarly, one finds

For example, when being compared to (A.14), it yields the identity

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)



As regards the superstring correction (2.8) in four dimensions, we find

The BR tensor (A.9) squared in the Petrov I form reads

As a result, we find the identities

which are valid on-shell, that is, modulo Ricci tensor-dependent terms. 

9. Two-Component Formalism 

To complete our notation, we summarize basic definitions and main features of the two-component spinor 

formalism in gravitation (cf. [18, 22]). The main point is the use of an  algebra isomorphic to the Lorentz 

algebra . 

We use lowercase (middle) latin indices for the curved spacetime vector indices, capital (early) latin letters for the 
tangent (flat spacetime) vector indices, and lowercase (early) greek letters for the (tangent spacetime) spinor 

indices,  and , whereas  and . 

A four-component Dirac spinor  can be decomposed into its chiral and antichiral parts,  and , by using the 

chiral projectors , where . The simplest form of chiral decomposition is obtained in the basis 

for Dirac gamma matrices with a diagonal  matrix

Here,  is a unit  matrix, and  are three Pauli matrices. 

Given a vector field  in a curved spacetime, it can always be represented by a bispinor field 

where we have introduced the vierbein , together with its inverse , obeying the relations

For instance, one easily finds that the metric in the two-component formalism can be represented by a product of 
two Levei-Civita symbols:

As regards the curvature tensor, it can be naturally decomposed in the two-component formalism as follows:

The four-spinor  (or ) is totally symmetric with respect to its chiral (or antichiral) spinor indices, while is is also 

(A.18)

(A.19)

(A.20)

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)



traceless, thus representing the self-dual (or antiself-dual) part of the Weyl tensor (A.4)

The four-spinor  is symmetric with respect to its first two indices, as well as with respect to the last two 

indices, while it is also traceless, thus representing the traceless part of the Ricci tensor:

The scalar  represents the scalar curvature . One easily finds

The Bianchi II identities  in the two-component formalism read as follows:
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