Turkish Journal of Physics

Turkish Journal

of

Physics

phys@tubitak.gov.tr

Scientific Journals Home Page

Progess in Photon Colliders

Valery TELNOV Institute of Nuclear Physics, 630090, Novosibirsk - RUSSIA

Abstract: Last two years were very important in history of a photon colliders. This option is included now in conceptual design reports of the NLC, JLC and TESLA/SBLC projects. All the designs foresee two interaction regions: one for e⁺e⁻ and the second for $\gamma\gamma$, γ e and e⁻e⁻ collisions. This paper is focused on three aspects: 1) arguments for photon colliders; 2) parameters of current projects; 3) ultimate luminosities and energies, new ideas. Recent studies have shown that the main collision effect - coherent pair creation - is suppressed at photon colliders with the energy (2E < 2 TeV) due to the beam repulsion, and one can achieve, in principle, the $\gamma\gamma$ luminosity exceeding 10³⁵ cm⁻²s⁻¹. The required electron beams with very small emittances can be obtained, for example, using a laser cooling of electron beams. This new method requires a laser with a power by one order of magnitude higher than that required for the ``conversion" of electrons to photons. Such lasers are not available today, but hopefully they will appear by the time when linear colliders will be built. High energy $\gamma\gamma$, γ e colliders with the luminosity comparable to that in e⁺e⁻ collisions are beyond the competition in study of many phenomena of particle physics.

Turk. J. Phys., **22**, (1998), 541-550. Full text: <u>pdf</u> Other articles published in the same issue: <u>Turk. J. Phys.,vol.22,iss.7</u>.