Nonlinear Sciences > Chaotic Dynamics

Chaos in Fermionic Many-Body Systems and the Metal-Insulator Transition

Z. Pluhar, H. A. Weidenmueller, T. Papenbrock, J. Tithof

(Submitted on 2 Nov 2009)

We show that finite Fermi systems governed by a mean field and a fewbody interaction generically possess spectral fluctuations of the Wigner-Dyson type and are thus chaotic. Our proof is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix ensemble $H^{\rm rm cr}$ that mimicks that transition. Our claim then follows from the fact that the generic random-matrix ensemble modeling a fermionic interacting many-body is much less sparse than $H^{\rm rm cr}$.

Comments: 1 figure, ~4 pages

Subjects: Chaotic Dynamics (nlin.CD); Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Nuclear Theory (nucl-th) Cite as: arXiv:0911.0316v1 [nlin.CD]

Submission history

From: Thomas Papenbrock [view email] [v1] Mon, 2 Nov 2009 14:54:31 GMT (39kb)

Which authors of this paper are endorsers?

Download:

- PDF
- PostScript
- Other formats

Current browse context: nlin.CD < prev | next > new | recent | 0911

Change to browse by:

cond-mat cond-mat.mes-hall nlin nucl-th

References & Citations

CiteBase

Bookmark(what is this?)
▼ CiteULike logo
Connotea logo
BibSonomy logo
X Mendeley logo
Facebook logo
🗙 del.icio.us logo
▼ Digg logo