

Login | Create Account

### Search & Browse

Simple Search

**Advanced Search** 

Browse by Subject

Browse by Year

Browse by Conferences/Volumes

Latest Additions

## Information

About the Archive

**Archive Policy** 

History

Help

FAQ Journal Eprint Policies

Register

Contact Us

#### News

Guide to new PhilSci-Archive features

# Why Philosophers Should Care About Computational Complexity

Aaronson, Scott (2011) Why Philosophers Should Care About Computational Complexity. [Preprint]



Download (455Kb) | Preview

## Abstract

One might think that, once we know something is computable, how efficiently it can be computed is a practical question with little further philosophical importance. In this essay, I offer a detailed case that one would be wrong. In particular, I argue that computational complexity theory---the field that studies the resources (such as time, space, and randomness) needed to solve computational problems---leads to new perspectives on the nature of mathematical knowledge, the strong AI debate, computationalism, the problem of logical omniscience, Hume's problem of induction and Goodman's grue riddle, the foundations of quantum mechanics, economic rationality, closed timelike curves, and several other topics of philosophical interest. I end by discussing aspects of complexity theory itself that could benefit from philosophical analysis

Export/Citation: EndNote | BibTeX | Dublin Core | ASCII (Chicago style) | HTML Citation | OpenURL

Social Networking: Share |

I tem Type: Preprint

Additional To appear in "Computability: Gödel, Turing, Church, and beyond," MIT Press, 2012

Information:

Turing Test, Chinese room, problem of induction, bleen/grue, computational learning theory,

Keywords: PAC-learning, computationalism, theoretical computer science, bounded rationality,

omniscience, quantum computing

<u>Specific Sciences > Computation/Information > Classical</u> Specific Sciences > Biology > Evolutionary Theory <u>Specific Sciences > Computation/Information > Quantum</u> <u> Specific Sciences > Computer Science > Artificial Intelligence</u>

Subjects: <u>General Issues > Confirmation/Induction</u>

Specific Sciences > Economics

General Issues > Formal Learning Theory

Specific Sciences > Mathematics

Specific Sciences > Physics > Quantum Mechanics

Depositing Dr. Scott Aaronson

Date Deposited: 10 Aug 2011 07:09 Last Modified: 10 Aug 2011 07:09

Item ID: 8748

URI: http://philsci-archive.pitt.edu/id/eprint/8748

## Actions (login required)



Document Downloads

ULS D-Scribe E-Prints Share Feeds



This site is hosted by the <u>University</u> <u>Library System</u> of the <u>University of</u> <u>Pittsburgh</u> as part of its <u>D-Scribe</u> <u>Digital Publishing Program</u>



Philsci Archive is powered by <u>EPrints</u> 3 which is developed by the <u>School</u> of <u>Electronics and Computer</u> <u>Science</u> at the University of Southampton. <u>More information</u> and software credits.



