Quantum Physics

The Lie Algebraic Significance of Symmetric Informationally Complete Measurements

D. M. Appleby, Steven T. Flammia, Christopher A. Fuchs

(Submitted on 31 Dec 2009)

Examples of symmetric informationally complete positive operator valued measures (SIC-POVMs) have been constructed in every dimension less than or equal to 67. However, it remains an open question whether they exist in all finite dimensions. A SIC-POVM is usually thought of as a highly symmetric structure in quantum state space. However, its elements can equally well be regarded as a basis for the Lie algebra gl(d,C). In this paper we examine the resulting structure constants, which are calculated from the traces of the triple products of the SIC-POVM element and which, it turns out, characterize the SIC-POVM up to unitary equivalence. We show that the structure constants have numerous remarkable properties. In particular we show that the existence of a SIC-POVM in dimension d is equivalent to the existence of a certain structure in the adjoint representation of gl(d,C). We hope that transforming the problem in this way, from a question about quantum state space to a question about Lie algebras, may help to make the existence problem tractable.

Comments: 56 pages

Subjects: Quantum Physics (quant-ph); Mathematical Physics (math-ph); Combinatorics (math.CO) Cite as: arXiv:1001.0004v1 [quant-ph]

Submission history

From: Steve Flammia [view email] [v1] Thu, 31 Dec 2009 10:39:31 GMT (40kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.