Quantitative Finance > Pricing of Securities

On refined volatility smile expansion in the Heston model

P. Friz, S. Gerhold, A. Gulisashvili, S. Sturm

(Submitted on 18 Jan 2010)

It is known that Heston's stochastic volatility model exhibits moment explosion, and that the critical moment \$s^{*}\$ can be obtained by solving (numerically) a simple equation. This yields a leading order expansion for the implied volatility at large strikes: \$\sigma {BS}(k,T)^ {2}T\sim \Psi (s^*-1) \times k\$ (Roger Lee's moment formula). Motivated by recent "tail-wing" refinements of this moment formula, we first derive a novel tail expansion for the Heston density, sharpening previous work of Dr{\u{a}}gulescu and Yakovenko [Quant. Finance 2, 6 (2002), 443--453], and then show the validity of a refined expansion of the type \$% \sigma {BS}(k,T) ^{2}T=(\beta {1}k^{1/2}+\beta {2}+...)^{2}\$, where all constants are explicitly known as functions of \$s^*\$, the Heston model parameters, spot vol and maturity \$T\$. In the case of the "zerocorrelation" Heston model such an expansion was derived by Gulisashvili and Stein [Appl. Math. Opt., DOI: 10.1007/s002450099085]. Our methods and results may prove useful beyond the Heston model: the entire quantitative analysis is based on affine principles; at no point do we need knowledge of the (explicit, but cumbersome) closed form expression of the Fourier transform of \$\log S_{T}\$ (equivalently: Mellin transform of \$S_{T}\$%). Secondly, our analysis reveals a new parameter ("\textit{critical slope}"%), defined in a model free manner, which drives the second and higher order terms in tail- and implied volatility expansions.

Subjects:Pricing of Securities (q-fin.PR); Probability (math.PR)MSC classes:60E99; 91B70Cite as:arXiv:1001.3003v1 [q-fin.PR]

Submission history

From: Stefan Gerhold [view email] [v1] Mon, 18 Jan 2010 10:13:06 GMT (19kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

All papers - Go!

Download:

- PDF
- PostScript
- Other formats

Current browse context: q-fin.PR < prev | next > new | recent | 1001

Change to browse by:

math math.PR q-fin

References & Citations

• NASA ADS

Bookmark(what is this?)