研究论文

SO₃/γ-Al₂O₃固体酸催化剂的制备、结构与酸性表征

姚瑞平 1 , 张铭金** 1,2 , 杨俊 2 , 易德莲 1 , 徐君 1 , 邓风 2 , 岳勇 2 , 叶朝辉 2

 $(^{1}$ 武汉科技大学化学系 武汉 430081)

(2中国科学院武汉物理与数学研究所 波谱与原子分子物理国家重点实验室 武汉 430071)

收稿日期 2004-8-24 修回日期 2004-10-30 网络版发布日期 接受日期

摘要 用酸中和法制备了活性 γ -Al $_2$ O $_3$,并在其表面负载SO $_3$ 得到固体酸催化剂SO $_3$ / γ -Al $_2$ O $_3$,用XRD,TG-DTA,FT-IR,NMR,NH $_3$ -TPD等对其进行了结构和酸性研究. 结果表明: 在SO $_3$ / γ -Al $_2$ O $_3$ 的制备过程中形成少量的Al $_2$ (SO $_4$) $_3$,同时SO $_3$ 与 γ -Al $_2$ O $_3$ 表面上的羟基反应,形成强的Brönsted酸位,根据 1 H/ 2 7Al 双共振(TRAPDOR)MAS NMR与FT-IR实验结果提出了Brönsted酸结构模型. SO $_3$ / γ -Al $_2$ O $_3$ 表面存在两种不同强度的酸中心,

其酸强度大于分子筛HZSM-5, 但弱于传统的固体超强酸 / γ -Al₂O₃.

关键词 SO₃/γ-Al₂O₃ 固体酸催化剂 固体NMR 酸位结构

分类号

Preparation of SO_3/γ - Al_2O_3 Solid Acid Catalyst and Characterization of Its Structure and Acidity

YAO Rui-Ping¹,ZHANG Ming-Jin*,¹,²,YANG Jun²,YI De-Lian¹

XU Jun¹,DENG Feng²,YUE Yong²,YE Chao-Hui²

(1 Department of Chemistry, Wuhan University of Science and Technology, Wuhan 430081)

(² State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071)

Abstract A solid acid catalyst SO_3/γ - Al_2O_3 was prepared by adsorption of SO_3 gas onto the surfaces of activated γ - Al_2O_3 . The structure and acidity of the catalyst were studied by XRD, NMR, FT-IR, TG-DTA and NH₃-TPD method. The results indicated that SO_3 reacted with activated γ - Al_2O_3 to form a small quantity of $Al_2(SO_4)_3$, and at the same time, the adsorption of SO_3 on the surface of γ - Al_2O_3 introduced two different kinds of Brönsted acid sites, which can be attributed to two different acid hydroxyl groups, including the bridging hydroxyl groups (S-OH-Al, giving rise to an 1 H resonance at ca. δ 4.3) and the terminal hydroxyl groups attached to S atoms (S-OH, giving rise to an 1 H resonance at ca. δ 11.2). The structure of Brönsted acid sites on the surface of catalyst SO_3/γ - Al_2O_3 has been proposed based on 1 H/ 2 Al TRAPDOR and FT-IR results. The acid strength of SO_3/γ - Al_2O_3 is stronger than that of zeolite HZSM-5, but still weaker than that of $/\gamma$ - Al_2O_3 , which is a conventional solid superacid catalyst.

Key words SO₃/ γ -Al₂O₃ solid acid catalyst solid-state NMR acid site structure

DOI:

扩展功能 本文信息 ► Supporting info ▶ PDF(356KB) ▶[HTML全文](0KB) ▶参考文献 服务与反馈 ▶把本文推荐给朋友 ▶加入我的书架 ▶加入引用管理器 ▶ 复制索引 ► Email Alert ▶文章反馈 ▶浏览反馈信息 相关信息 本刊中 包含 "SO₃/γ-Al₂O₃"的 相关文章 ▶本文作者相关文章 姚瑞平 张铭金 杨俊 易德莲

徐君

邓风

<u>岳勇</u> 叶朝辉