Turkish Journal of Chemistry

Turkish Journal

ııaı

Chemistry

of

Keywords Authors

chem@tubitak.gov.tr

Scientific Journals Home Page A density functional theory study of oxidation of benzene to phenol by N₂O on Fe- and Co-ZSM- 5 clusters

Mehmet Ferdi FELLAH^{1,2}, Işık ÖNAL¹

¹Department of Chemical Engineering, Middle East Technical University,
Ankara, 06531, TURKEY

²Department of Chemical Engineering, Yüzüncü Yıl University,
Van, 65080, TURKEY
e-mail: ional@metu.edu.tr

<u>Abstract:</u> Density functional theory (DFT) calculations were carried out in the study of oxidation of benzene to phenol by N₂O on relaxed [(SiH₃)₄AlO₄M] (where M=Fe, Co) cluster models representing Fe-and Co-ZSM-5 surfaces. The catalytic cycle steps are completed for both Fe-ZSM-5 and Co-ZSM-5 clusters. The general trend of the results that were obtained in terms of activation barriers for the Fe-ZSM-5 cluster is in agreement with the experimental and theoretical literature. It was observed that the phenol formation step is the rate-limiting step for both clusters and Co-ZSM-5 surface has a lower activation barrier than the Fe-ZSM-5 surface (i.e. 35.82 kcal/mol vs. 45.59 kcal/mol, respectively).

Key Words: DFT, benzene oxidation, phenol, N₂O, Fe-ZSM-5, Co-ZSM-5.

Turk. J. Chem., 33, (2009), 333-345.

Full text: pdf

Other articles published in the same issue: Turk. J. Chem., vol.33, iss.3.