二氧化硅栅绝缘层的制备与表面修饰

Preparation and Surface modification of SiO₂ Gate Insulator for Organic Thin Film Transistors

摘要点击: 40 全文下载: 116

查看全文 查看/发表评论 下载PDF阅读器

中文关键词: <u>二氧化硅</u> <u>绝缘层</u> <u>0TS</u> <u>修饰</u>

英文关键词: SiO₂ insulator OTS modification

基金项目:

作者 单位

白 钰 上海大学材料学院,上海 201800

刘 向 上海大学材料学院,上海 201800

<u>陈</u> 玲 上海大学材料学院,上海 201800

朱文清 上海大学材料学院,上海 201800;上海大学新型显示教育部重点实验室,上海 200072

张志林 上海大学材料学院,上海 201800;上海大学新型显示教育部重点实验室,上海 200072

中文摘要:

研究了有机薄膜晶体管的二氧化硅栅绝缘层的性质。二氧化硅绝缘层的制备采用热生长法,氧化气氛是0₂(g)+H₂0(g),工艺为干氧-湿氧-干氧的氧化过程。制得的绝缘层漏电流在10⁻⁹ A左右。以该二氧化硅作为有机薄膜晶体管的栅绝缘层,并五苯作为有源层制作了有机薄膜晶体管器件。实验表明采用十八烷基三氯硅烷(OTS)进行表面修饰的器件具有OTS/Si 0₂双绝缘层结构,可以有效地降低Si 0₂栅绝缘层的表面能并改善表面的平整度。修饰后器件的场效应迁移率提高了1.5倍、漏电流从10⁻⁹ A降到10⁻¹⁰ A、阈值电压降低了5 V、开关电流比从10⁴增加到10⁵。结果显示具有OTS/Si 0₂双绝缘层的器件结构能有效改进有机薄膜晶体管的性能。

英文摘要:

An organic thin-film transistor (OTFTs) with $\mathrm{Si0}_2$ gate insulator configuration between gate insulator and source/drain electrodes was investigated. $\mathrm{Si0}_2$ insulator layer was prepared by thermal growth method with dry-oxygen, wet oxygen, dry-oxygen procedures and $\mathrm{O}_2(\mathrm{g})+\mathrm{H}_2\mathrm{O}(\mathrm{g})$ as oxidant. The $\mathrm{Si0}_2$ insulator reduced the leakage current to $\mathrm{10}^{-9}\mathrm{A}$. The OTFTs devices was prepared with the $\mathrm{Si0}_2$ insulator and the pentacene was used as an active layer of devices. The results show that the surface energy of the $\mathrm{Si0}_2$ gate dielectric is reduced and device flat level is significantly improved by using octadecyltrichlorosilane(OTS). This OTS/SiO $_2$ bilayer gate insulator configuration increases the field-effect mobility by 1.5 times, reduces the leakage current from $\mathrm{10}^{-9}$ to $\mathrm{10}^{-10}$ A and the threshold voltage by 5 V, and improves the on/off ratio from $\mathrm{10}^4$ to $\mathrm{10}^5$ indicating that using OTS/SiO $_2$ double-layer of insulator is an effective way to improve OTFT performance.

您是第595041位访问者

主办单位: 中国化学会 单位地址: 南京大学化学楼

本系统由北京勤云科技发展有限公司设计