Turkish Journal of Chemistry

Turkish Journal

of

Chemistry

Comparative study of selective CO oxidation over Pt-Co-M/Al₂O₃ catalysts (M=Ce, Mg, Mn, Zr, Fe) in hydrogen-rich streams: effects of a second promoter

K. Erdem UĞUZ and Ramazan YILDIRIM
Boğaziçi University, Department of Chemical Engineering,
34342 Bebek, İstanbul-TURKEY
e-mail: yildirra@boun.edu.tr

Keywords Authors

chem@tubitak.gov.tr

Scientific Journals Home
Page

Abstract: The selective CO oxidation over Pt-Co/Al₂O₃ catalyst in hydrogen-rich streams was studied in the presence of Ce, Mg, Mn, Ze, and Fe as the second promoters. The catalysts were prepared using incipient to wetness co-impregnation, and tested in a microflow reaction system. The effects of the second promoter were investigated in near 100% CO conversion conditions both in the absence and presence of CO₂ and H₂O in the feed. 100% CO conversion was obtained with the addition of each second promoter at 110 °C while Pt-Co/Al₂O₃ catalyst had 96%-98% CO conversion. It was also found that changing the Pt ratio from 1.4 wt.% to 0.7 wt.% at 110 °C did not have any significant effects on catalysts containing Ce, Mg, or Mn, and it had negative effects in the case of Fe and Zr. The CO conversion decreased for all the catalysts in the presence of 25% CO₂ in the feed as expected, and recovered fully or significantly with the addition of 10% H₂O. The addition of Ce, Mg, and Mn as the second promoter also improved the performance 2%-3% compared to Pt-Co/Al₂O₃ catalysts in the presence of CO and H₂O. The increase in the reaction temperature to 130 °C decreased the CO conversion over all the catalysts.

<u>Key Words:</u> Selective CO oxidation, promoted Pt catalysts, Pt-Co/Al₂O₃ catalyst, fuel cell, fuel processor.

Turk. J. Chem., 33, (2009), 545-553.

Full text: pdf

Other articles published in the same issue: Turk. J. Chem., vol.33, iss.4.