Turkish Journal of Chemistry

Turkish Journal

Conformational Analysis of Linear Peptide (Glu¹-Leu²-Leu³-Gly⁴-Gly⁵-Arg⁶-Phe⁷NH₂)

of

Chemistry

L. DEMİR, A. KARABULUT, G. BUDAK, Y. ŞAHİN
Atatürk University, Faculty of Arts and Sciences,
Department of Physics, 25240, Erzurum-TÜRKİYE
N. SEFTEROĞLU
Bakü State University, Faculty of Physics,
AZERBAYCAN

<u>Abstract:</u> Conformational energy-minimization of the Sea Anemone and Sea Pansy neuropeptide Pol-RFamide (Glu¹-Leu²-Leu³-Gly⁴-Gly⁵-Arg⁶-Phe⁷-NH₂) was carried out by molecular mechanics (MM). The linkage bonds were characterized by the torsion angles θ, ψ and ω and the side groups were characterized by the torsion angles χ_1 , χ_2 , χ_3 ldots The energy-map for each monopeptide of the Pol-

chem@tubitak.gov.tr

RFamide I was drawn in the range of -180° to 180° with increments of 20°. Conformation facilities for monopeptides were determined from these maps. These results were used in the analysis of the dipeptide (Glu^1 -Leu²). Then, the (Glu^1 -Leu²-Leu³) tripeptide was examined using the calculated results for the dipeptide. Conformational analysis of the (Glu^1 -Leu²-Leu³-Gly⁴) tetrapeptide was performed using the low-energy values for the tripeptide. The space structure of the (Glu^1 -Leu²-Leu³-Gly⁴-Gly⁵-Arg⁶-Phe⁷-

NH₂) neuropeptide was found as a result of minimization of energies by rotating the tetrapeptide (Glu¹-

Scientific Journals Home
Page

Leu²-Leu³-Gly⁴) and the dipeptide (Arg⁶-Phe⁷-NH₂) about the monopeptide (Gly⁵).

Turk. J. Chem., 23, (1999), 257-262.

Full text: pdf

Other articles published in the same issue: Turk. J. Chem., vol. 23, iss. 3.