Turkish Journal of Chemistry

Turkish Journal

Intrinsic Semiconducting Materials on Phthalocyanine Basis

of

Chemistry

Michael HANACK
Institut für Organische Chemie,
Lehrstuhl für Organische Chemie II,
Universitäat Tübingen,
Auf der Morgenstelle 18,
D-72076 Tübingen - GERMANY

Keywords Authors

chem@tubitak.gov.tr

Scientific Journals Home
Page

Abstract: Stacked transition metal macrocycles $[MacM(L)]_n$ with M e.g. Fe, Ru, Os, Co, Rh and Mac = phthalocyanine (Pc) 1,2- or 2,3-naphthalocyanine (1,2-, 2,3-Nc) were synthesized. The bridging ligands (L) may be e.g. pyrazine (pyz) or s-tetrazine (tz). In general, these complexes $[MacM(L)]_n$ are insoluble in organic solvents; however, soluble oligomers $[R_4PcM(L)]_n$ can be prepared using metallomacrocycles R_nPcM , R = t-bu, et, OR, M = Fe, Ru, which are substituted in the peripheric positions. A systematic investigation of the influence of the bridging ligands on the semiconducting properties in $[MacM(L)]_n$ reveals that changing L, e.g., from dabco over pyz to tz leads to a steady increase of the semiconducting properties without external oxidative doping. Powder conductivities in the order of 0.1 S/cm can be reached by using s-tetrazine, 3,6-dimethyl-s-tetrazine (me_2 tz) and others, e.g. fumarodinitrile, as the bridging ligands. The intrinsic conductivities are a result of the low oxidation potential of tz and me_2 tz and due to the low lying LUMO in the corresponding bridged systems $[MacM(tz)]_n$.

Turk. J. Chem., 22, (1998), 13-22.

Full text: pdf

Other articles published in the same issue: Turk. J. Chem., vol. 22, iss. 1.