

-						Sign in
$\langle 0, 3 \rangle$	🔶 Analyti					
The Japan Society for Analytical Chemistry						
Available Issues Ja	panese				>>	Publisher Site
Author:	ADVA	NCED	Volume	Page		
Keyword:	Sea	rch				Go
	Add to Favorite/Citation Articles Alerts	đ	Add to Favorite Publication	s e Ale	gister rts	? My J-STAGE HELP

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract

ONLINE ISSN : 1348-2246 PRINT ISSN : 0910-6340

Analytical Sciences Vol. 26 (2010), No. 2 p.223

[PDF (606K)] [References]

Analysis of Ultra-Thin HfO₂/SiON/Si(001): Comparison of Three Different Techniques

<u>Kenji KIMURA¹</u>, <u>Kaoru NAKAJIMA¹</u>, <u>Thierry CONARD²</u>, <u>Wilfried</u> <u>VANDERVORST²</u>, <u>Andreas BERGMAIER³ and Günther DOLLINGER³</u>

1) Department of Micro Engineering, Kyoto University

2) IMEC

3) Institut für Angewandte Physik und Messtechnik, Universität de Bundeswehr München

(Received September 4, 2009) (Accepted November 27, 2009)

Composition depth profiling of HfO₂ (2.5 nm)/SiON (1.6 nm)/Si(001) was performed by three diffetent analytical techniques: high-resolution Rutherford backscattering spectroscopy (HRBS), angle-resolved X-ray photoelectron spectroscopy (AR-XPS) and high-resolution elastic recoil detection (HR-ERD). By comparing these results we found the following: (1) HRBS generally provides accurate depth profiles. However, care must be taken in backgroud subtraction for depth profiling of light elements. (2) In the standard AR-XPS analysis, a simple exponential formula is often used to calculate the photoelectron escape probability. This simple formula, however, cannot be used for the precise depth profiling. (2) Although HR-ERD is the most reliable technique for the depth profiling of light elements, it may suffer from multiple scattering, which deteriorates the depth resolution, and also may cause a large background.

[PDF (606K)] [References]

To cite this article:

Kenji KIMURA, Kaoru NAKAJIMA, Thierry CONARD, Wilfried VANDERVORST, Andreas BERGMAIER and Günther DOLLINGER, *Anal. Sci.*, Vol. 26, p.223, (2010).

doi:10.2116/analsci.26.223 JOI JST.JSTAGE/analsci/26.223

Copyright (c) 2010 by The Japan Society for Analytical Chemistry

