
$\underline{\text { TOP }>~} \underline{\text { Available Issues }}>$ Table of Contents $>$ Abstract

ONLINE ISSN : 1348-2246
PRINT ISSN:0910-6340

Analytical Sciences

Vol. 26 (2010) , No. 3 p. 387
[PDF (476K)] [References]

Simultaneous Determinations of $\mathbf{C r}(\mathrm{VI})$ and $\mathbf{C r}$ (III) by Ion-Exclusion/Cation-Exchange Chromatography with an Unmodified Silica-Gel Column

 NAKAGOSHI ${ }^{1)}$ and Kazuhiko TANAKA ${ }^{1)}$
1) Graduate School for International Development and Cooperation, Hiroshima University
2) Biomass Technology Center, National Institute of Advanced Industrial Science and Technology

(Received November 23, 2009)
(Accepted December 24, 2009)
In order to characterize the ion-exclusion and cation-exchange properties of an unmodified silica-gel column, the retention behaviors of $\mathrm{Cr}(\mathrm{VI})$ and $\mathrm{Cr}(\mathrm{III})$ ions were investigated using a Develosil 30-5 ($150 \times 4.6 \mathrm{~mm}$ i.d.) in the acidic region. $\mathrm{Cr}(\mathrm{VI})$ was separated from other anions by an ion-exclusion and ion-adsorption mechanism, and $\mathrm{Cr}(\mathrm{III})$ was separated from other cations with a cation-exchange mechanism. When using 2.0 mM oxalic acid (pH 2.6) as an eluent, a good separation of $\mathrm{Cr}(\mathrm{VI})$ and $\mathrm{Cr}(\mathrm{III})$ was obtained using conductimetric detection in 12 min . The method was successfully applied to the simultaneous determinations of $\mathrm{Cr}(\mathrm{VI})$ and $\mathrm{Cr}(\mathrm{III})$ added into tap-water and river-water samples.

Shizuko HIRATA, Daisuke KOZAKI, Kinya SAKANISHI, Nobukazu NAKAGOSHI and Kazuhiko TANAKA, Anal. Sci., Vol. 26, p.387, (2010) .
doi:10.2116/analsci.26.387
JOI JST.JSTAGE/analsci/26.387
Copyright (c) 2010 by The Japan Society for Analytical Chemistry

Japan Science and Technology Information Aggregator, Electronic

