

Analytical Sciences The Japan Society for Analytical Chemistry Available Issues | Japanese | >> Publisher Site Author: | ADVANCED | Volume | Page | | Keyword: | Search | Favorite | Citation | Add to | Favorite | Citation | Add to | Favorite | Alerts | Alerts | Alerts | TOP > Available Issues > Table of Contents > Abstract ONLINE ISSN: 1348-2246 | PRINT ISSN: 0910-6340 Analytical Sciences

A Highly Selective Fluorescent Sensor for Cu²⁺ Based on a Covalently Immobilized Naphthalimide Derivative

 $\frac{Xu\text{-}Hua\ ZHAO}{I}^{1)}, \underbrace{Qiu\text{-}Juan\ MA}^{1)2)}, \underbrace{Xiao\text{-}Bing\ ZHANG}^{1)}, \underbrace{Bo\ HUANG}^{1)}, \underbrace{Qin\ JIANG}^{1)}, \underbrace{Jing\ ZHANG}^{1)}, \underbrace{Guo\text{-}Li\ SHEN}^{1)} \ and \underbrace{Ru\text{-}Qin\ YU}^{1)}$

- 1) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
- 2) College of Pharmacology, Henan University of Traditional Chinese Medicine

(Received December 31, 2009) (Accepted March 4, 2010)

Vol. 26 (2010), No. 5 p.585

In this paper, we describe the fabrication and analytical characteristics of fluorescence-based copper ion-sensing glass slides. To construct the sensor, a naphthalimide derivative N-allyl-4-(bis(pyridin-2-ylmethyl)amino)ethylamino-1,8-naphthalimide (1) with a terminal double bond was synthesized and photo-copolymerized with 2-hydroxyethyl methacrylate (HEMA) on a glass surface treated with a silanizing agent. In the presence of Cu^{2+} at pH 7.24, the resulting optical sensor undergoes fluorescence quenching. Thus, the proposed sensor with visible excitation can behave as a fluorescent sensor for the selective detection of Cu^{2+} . In addition, the sensor exhibits satisfactory selectivity, reproducibility and response time. The sensing membrane possesses a relatively long lifetime of at least 2 months. The linear response range covers a concentration range of Cu^{2+} from 4.0×10^{-7} to 6.0×10^{-4} mol/L and the detection limit is 2.0×10^{-7} mol/L. The determination of Cu^{2+} in river water samples shows satisfactory results.

[PDF (2257K)] [References]

Download Meta of Article[Help]

[PDF (2257K)] [References]

To cite this article:

Xu-Hua ZHAO, Qiu-Juan MA, Xiao-Bing ZHANG, Bo HUANG, Qin JIANG, Jing ZHANG, Guo-Li SHEN and Ru-Qin YU, *Anal. Sci.*, Vol. 26, p.585, (2010) .

doi:10.2116/analsci.26.585

JOI JST.JSTAGE/analsci/26.585

Copyright (c) 2010 by The Japan Society for Analytical Chemistry

Japan Science and Technology Information Aggregator, Electronic

