

Analytical Sciences The Japan Society for Analytical Chemistry Available Issues | Japanese >> Publisher Site Author: Page ADVANCED Volume Go Keyword: Search **TOP > Available Issues > Table of Contents > Abstract** ONLINE ISSN: 1348-2246 PRINT ISSN: 0910-6340

Analytical Sciences

Vol. 26 (2010), No. 6 p.665

[PDF (662K)] [References]

A Reflectance Flow-through Thionine Sol-gel Sensor for the **Determination of Se(IV)**

Joana A. E. CARVALHIDO¹⁾, Agostinho A. ALMEIDA¹⁾, Alberto N. ARAÚJO¹⁾ and Maria C. B. S. M. MONTENEGRO¹⁾

1) REQUIMTE, Dep. Química-Física Fac. Farmácia U. P.

(Received January 13, 2010) (Accepted March 31, 2010)

In this work, a reversible sensor to assess the total Se(IV) content in samples is described. Pre-activated glass slides were spin-coated with 100 µL of a 20-h aged sol-gel mixture of 1 mL of tetramethoxysilane, 305 μ L of 50 mmol L⁻¹ HCl and 2.0 mg of thonine. The flowcell consisted of one of those slides as a window, and was filled with beads of a polystyrene anionic exchange resin to retain Se(IV) in the form of selenite ions. A reflectance transduction scheme at a wavelength of 596 nm was adopted. The cell was coupled to a multicommutation flow system where a programmed volume of a sample solution and 373 μL of 0.4 mmol L⁻¹ iodide in a 1.6 mol L⁻¹ HCl solution were sequentially inserted into the cell. The iodine produced from the reaction of retained Se(IV) with iodide bleached the blue color of thionine. Considering a sample volume of 2.30 mL, with which the preconcentration step was minimized, a linear dynamic working range between 1.5 to 20 µg mL⁻¹ and a detection limit of 0.29 µg mL⁻¹ were obtained. The sensor enabled us to perform approximately 200 assays, and provided results similar to those of electrothermal atomic absorption spectrometry.

[PDF (662K)] [References]

To cite this article:

Joana A. E. CARVALHIDO, Agostinho A. ALMEIDA, Alberto N. ARAÚJO and Maria C. B. S. M. MONTENEGRO, *Anal. Sci.*, Vol. 26, p.665, (2010).

doi:10.2116/analsci.26.665

JOI JST.JSTAGE/analsci/26.665

Copyright (c) 2010 by The Japan Society for Analytical Chemistry

Japan Science and Technology Information Aggregator, Electronic

