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Basis set study of classical rotor lattice dynamics
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The reorientational relaxation of molecular systems is important in many phenomenon and
applications. In this paper, we explore the reorientational relaxation of a model Brownian rotor
lattice system with short range interactions in both the high and low temperature regimes. In this
study, we use a basis set expansion to capture collective motions of the system. The single particle
basis set is used in the high temperature regime, while the spin wave basis is used in the low
temperature regime. The equations of motion derived in this approach are analogous to the
generalized Langevin equation, but the equations render flexibility by allowing nonequilibrium
initial conditions. This calculation shows that the choice of projection operators in the generalized
Langevin equatiofiGLE) approach corresponds to defining a specific inner-product space, and this
inner-product space should be chosen to reveal the important physics of the problem. The basis set
approach corresponds to an inner-product and projection operator that maintain the orthogonality of
the spherical harmonics and provide a convenient platform for analyzing GLE expansions. The
results compare favorably with numerical simulations, and the formalism is easily extended to more
complex systems. €004 American Institute of Physic§DOI: 10.1063/1.1649735

I. INTRODUCTION molecules interact with each other through a bilinear tensor
) ) ) . interaction,u;Tj;u;, wherei andj denote positions on the
Reorientational relaxation of molecular systems is im-|attice andy; is the orientation of the molecule at that posi-
portant in understanding many processes, including dielectrigqp,. Usually, the interaction tensd,; is only a function of
relaxation, solvation dynamics, electron transfer, and criticalhe distance between two molecules, and their orientation
behavior in liquid crystal$=® Reorientational relaxation has ith respect to the relative position vector. The model allows
been used as a probe of polymer melts near the glass trangimple incorporation of an external potential that linearly
tion because the rotational motion explores the heterogeneit(y()umeS to the orientation of the rotors with a position depen-
of local dynamics on long time scales. Studies of rotationaljence, but this paper omits this addition for simplicity. Under

motion at the single molecule level demonstrate heterogénese interactions, the system undergoes rotational Brownian
neous nonexponential relaxation and possible domaipytion

switching in these glassy systefhS.Since fragile glass

forming liquids have fairly isotropic interactions, the behav-

ior of the reorientational relaxation in these systems com-  #G{Q},)=Do> [V G{Q}1)

pared with strong liquids may be significantly different, and '

the differences may be responsible for some of the properties +Vo [G{Qi}) V. BVHEQ D] (N)

of the glass phaséDipolar reorientational relaxation of sol- ' '

vents is also important in understanding the structure anghe orientation of moleculé={i,.i, i } is specified by a

function of proteins, proton transfer, solvation of ions, andset of angles);. The Green’s function i$G with a free

many other phenomenon that are important to biologicaljiffusion constantp,, and inverse temperaturg, The po-

processed '® The reorientational relaxation is also impor- tential BV is S imiTi 1, andVy, is the rotational diffusion

tant in interpreting spectroscopy of these complex SySteméperator. '

with optical mea;s,urements that probe the orientations of " gjmyations using similar lattice solvents characterize

transition dlpolgé. _ _ _ the solvation dynamics and thermodynamics of complex
These applications motivate us to study the reorlenta-systems1_3,24,25TheSe simulations are more realistic than a

tional relaxation of a model lattice system, where the mol-gig|ectric continuum, but not as computationally expensive

ecules are free rotors fixed on a perfectly ordered,g mojecular dynamics simulations with explicit solvent. To

lattice#*072141615"*Fime scale separation justifies ne- paye 4 comparison between real systems and simulations

glecting translational motion because the reorientational magith |attice solvents, one must explore the properties of the

tion is often much faster. Even more simplistic models with|5tice solvent and compare them with more realistic simula-

limited orientations successfully explained observations oti;5 and experiments. Simulations by Papazyan and Maron-

electron transfer reactions and solvation dynarfi’sThe  cgfji and by Zhou and Bagchi demonstrated that the model of

a Brownian dipolar lattice shows many of the properties of

dElectronic mail: jianshu@mit.edu more realistic dipolar liquid systems, such as water, includ-
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ing non-Debye relaxation that fits the Davidson—Cole dieleciution more probable. This renormalization comes from cap-
tric response function, which is often used in the analysis ofuring the contributions from collective motions within the
data from real dipolar system$:*? truncated basis set. The other perturbation methods incorpo-
The Brownian dipolar lattice has an extensive history.rate these additional interactions by considering two particle
The thermodynamics of this system was studied by Rosercorrelations, then three particle correlations, and the se-
berg and Lax with a high temperature expansivii: Erzan  quence continues and results in a failure to capture collective
and Stell used a variational theory to approximate the lowmotions at finite order.
temperature behavior of a similar dipolar lattice system, and  The truncated basis set expansion method evaluates the
Hgye and Stell used the linear hypervertex approximation teigenfrequency and memory kernel of the generalized
find the ferroelectic phase transition for off-lattice dipolar Langevin equatiofGLE) by directly incorporating the col-
hard sphere systems, which have been extensively studied lgctive motions of the particles in the system. Unlike the
many authors, including Nienhuis and Deuféh?® Using a  traditional projection operator techniques, the equilibrium
similar approach, Zwanzig studied the dielectric relaxationdistribution contributes to the initial conditions only and are
of this system:? Titulaer and Deutch also investigated this not part of the definition of the memory functions. As will be
system with high temperature expansions to develop a reladiscussed in Sec. VI, the difference comes from defining a
tionship between dielectric relaxation and time correlationdifferent projection operator, which does not depend on equi-
functions???° More recently, Loring and Mukamel used the librium so that this approach can be used in systems that are
dipolar lattice to describe the solvation of ions, whichfar from equilibrium. The standard GLE approaches with a
Papazyan and Maroncelli studied with a Brownian dynamicgerturbation expansion to a finite order more closely re-
simulation'?'* Berne, and later Bagchi, Chandra, and Ricesemble self-consistent mean field theories, where the par-
applied a time-dependent density functional theory to study &écles move in a time dependent potential created by the
similar system®1¢-3Their work elucidated the role of inter- equilibrium many-body mean field effects. The mean field
actions as well as translational and rotational diffusion oncan give good agreement for short times, but it may fail for
deviations from Debye relaxation. Several other simulationgonger time scales, where collective motions become impor-
on this system reveal the role of phase transitions in théant.
dielectric response and quantify non-Debye relaxatioR. This paper shows that the projection operator techniques
As discussed in Appendix C, the high temperatufe, are much more versatile than one expects from examining
expansion for the dipolar lattice starts from the simple isothe standard GLE approaches. Standard GLE uses a specific
tropic solution of the high temperature phase and systematbasis set and inner product. As discussed in Appendix A, the
cally incorporates corrections of ordér ™. These solutions equations for GLE may not directly write out the higher
are asymptotic to the high temperature solution and may natrder basis functions, but one can easily use basis set com-
extrapolate well into finite temperatures. To correct this dif-pleteness to show that standard GLE approaches assume a
ficulty, several authors used projection operator techniques tepecific basis set and inner-product. The dynamics do not
derive a memory kernel that contains the contributions frondepend on the specific form of the basis set or inner-product,
interactions between rotot$!1*3We refer to this approach which determine the projection operators. As with all inner-
as the standard generalized Langevin equati@hE) ap-  product spaces, the inner-product and the basis set define the
proach because the equations have the same form as thagmace. If two spaces describe the same physical system, the
derived from the Liouville equation, except there is no ran-operators in one space must translate into operators in the
dom force and the frequency term is replaced by a decagther space. However, one can never evaluate the equations
term. Evaluation of the memory kernel resulting from theexactly and the chosen basis set and inner-product influences
GLE approach requires a leading order perturbation exparthe accuracy of the approximations.
sion, which can also possess some difficulties with extrapo- The choice of the inner-product spadeasis set and
lation to finite temperatures. As a result, the agreement banner-produck can help reveal certain physics. The standard
tween the simulation and the perturbation expansion for th&LE approach chooses the inner-product as the integral be-
dipoles on a lattice breaks down for moderate dipolar intertween two elements with a weighting by the equilibrium dis-
actions, especially in the long time regitfe! The tribution. For the lattice rotor problems discussed below, one
asymptotic nature of these perturbation expansions impliegenerally cares about orientational correlations functions.
that additional terms in the perturbation series will not nec-The natural basis set for measuring these quantities is the
essarily improve the agreement. product of spherical harmonics for each rotor in the lattice
The difficulty with traditional perturbation solutions mo- (see Sec. )l The inner-product with the weighting by the
tivates us to explore a basis set approach to Brownian dyequilibrium distribution destroys the orthogonality of this ba-
namics of interacting rigid rotors on a lattice. In a companionsis set. In principle one can use Gram-Schmidt procedures
paper, we use a similar approach to study the facilitated kito restore orthogonality, but the new inner-product space has
netic Ising modef* In analogy to the use of a basis set in a complicated inner-product, which results in complicated
guantum mechanics, we introduce a complete basis set amiojection operators in terms of the quantities that we want
attempt to diagonalize the diffusion operator within a sub-to evaluate—the correlations between various spherical har-
space of the basis set. The basis set gives stability to th@onics.
equations by partially renormalizing the perturbation expan-  If the inner-product does not include the equilibrium dis-
sion, which makes convergence to the finite temperature sdribution, the orthogonality of the spherical harmonics is
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maintained for all interactions and temperatures. Orthogonahany-body effect on the motions of a single dipole, but
transformations to other observables are not complicated bipnger time behavior depends on collective motidhs:1°
the equilibrium distribution. An example in Sec. Il A shows Unlike the dipolar system, our system cannot be frustrated so
that we can easily determine both the vector dependent réhe single rotor correlation function is not slower than the
laxation and the single rotor relaxation by simple transformsmany-body correlations. We show that the harmonic modes
This vector dependent relaxation can give insight into vari-of spin-waves capture both the short and the longer time
ous collective processes including the validity of “Onsager’sscale behavior with deviations in the intermediate time re-
inverted snowball effect3® We can also prepare the system gime. The success of spin waves in the low temperature re-
in a nonequilibrium initial condition—applying a strong gime and the single particle basis set in the high temperature
electric field for negative time and then turning the field off regime is similar to local clustering modes versus hydrody-
att=0 is an example—and watch the system relax. Standardamic modes discussed in applications of mode coupling
GLE approaches restrict themselves to fluctuations arountheory>33°
equilibrium. The equilibrium independent inner-product The rest of the paper is organized as follows: Section I
space may not be the best choice for all applications, but oniatroduces the basis set formalism in a general context for
should consider the possibility of using inner-products othetattice rotor models. In Sec. Ill we demonstrate application
than those used in standard GLE approaches. In the end, tloéthis formalism to the specific model discussed above. Sec-
inner-product, and therefore the projection operator, shoultion IV presents a numerical comparison between the direct
be determined by the physics that one wants to reveal.  perturbation expansion, a memory kernel expansion, and the
As a proof of principle, we use the equilibrium indepen- truncated basis set. For completeness, we discuss the low
dent inner-product to study a simpler system than the dipolatemperature spin-wave approximation in Sec. V and con-
lattice since numerical simulations are easier and the equa&iude in Sec. VI.
tions are simpler to interpret. The equilibrium independent
inner-product allows us to easily explore the vector depen-
dence of the relaxation and explore the role of coupling be-

. . . . . RRELATION FUNCTIONS AND THE BASI ET
tween different basis elements in the relaxation of the sys- co ON FUNCTIONS SIS S

tem. The coupling to different basis elements correspond to  |n this section we will introduce the application of the

different relaxation mechanisms, and can give better physicatuncated basis set method to a three-dimensional lattice with
insight into the behavior of the system. Applications to morearbitrary bilinear interactions. The discussion is general, but
complicated systems will be addressed in future work. Weye apply these methods to a simpler two-dimensional system
restrict ourselves to a two dimensional lattice with the mo-jn Sec. 11l because we can perform accurate simulations of
lecular orientations also in the plane so that each molecule ighis system. The important measured quantities are the cor-
described by a single anglé,. The interactions are nearest relation functions of the orientations of the rigid rotors. In

neighborgNN) with a directional dependence that resembleshis paper, we calculate the autocorrelation function of a

the dipolar interaction in two dimensions, single rotor. This correlation function is important in under-
standing the dielectric properties of neat solvents and in in-
— _ D L terpreting two-dimensional spectroscopy of a solute in a di-
V= J(pi- (i (i +Iui- pi ' . T
k i /SN (g (=0 Gty (D)4 T lute solvent, such as HDO inJ®. Choosing the direction

that we measure the rotor’s orientation as thexis, the
_ _ autocorrelation function can be written as
—Zi 23-co86;+ 6,.4(9)—23-cO4 6+ 6. 1) (2

Ht)uf(0)=cod 6;(t))cog 6;(0
This interaction is chosen because the ten3gréiave many #i(Ri(0) 6i(t))cos 6i(0))

properties that appear in the dipolar tensor, includihg;; ™
=0. Zwanzig performed a direct perturbation expansion of - ?Yl,O(Qi(t))YlyO(Qi(o))' 3
the dipolar tensor and many of his expressions do not depend

on the exact form of;; so we can directly compare our basis where the overbar denotes expectatipf(t) is the z com-
set approach with Zwanzig's perturbation expansion. ponent of the rotor's orientation vectof(t) is the corre-
These properties also simplify evaluation of these expressponding angle in polar coordinates, aig, is the spherical
sions, since it makes cancellations among different termparmonic, Y o= J3/(4m) cos(@). In fact, all important ob-
more apparent. servable can be expressed in terms of correlations between

Redefining the angles that correspond to th&s maps  elements of the orthogonal basis set,
this problem into the classicaly plane rotor model with the

exotic Kosterlitz—Thouless phase transitigi6,— 6,;),
(02i+(é)—>_02i+(é)), (02i+(2)_)77_ 02i+(2))! and (62i+(i) X({llamI!QI(t)}):H Yli,mi(Qi(t))- (4)
_}02”(%)_77)]_36—38 Although we are mainly concerned

with the high temperature basis set expansion, we addre$r the single-particle autocorrelation function, all rotors are
some of the issues associated with a spin-wave basis set iin the Y, o= 1/\4m state except for rotor. The correlation
the low temperature regime in Sec. V. Similar to the resultdetween two basis elementsy({l;,m;,Q;(t)}) and

!

for the dipolar lattice, the short time behavior displays ax({l{ ,m/,Q;(t’)}) can be formally written as
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dQ; ; glected. These observations give a natural scheme for per-

f H aa X ({1, m;, Qi}) forming a basis set expansion for high temperatures. We
' truncate the summation in Eg8) at the point where the

Xexg D(t—t") x({l{,m{, Qi}) ped{Qi}), (5)  diagonal free diffusion term dominates the coupling between

basis set elements. Then we approximately diagonalize this
where D is the diffusion operator defined by the Green'stryncated basis set with respect to the diffusion operator and
fUnCtion andpeq({ﬂi}) iS the equ”ibrium distribution. If we So|ve for the equation Of motion_
have time translational invariance, we can set0. The The simplest interpretation of this approach is a matrix
diffusion operator is not Hermitian and must be applied topropagation scheme with the matrix elementsAdf deter-
the right. By defining an inner-product,(A|B)  mined by (DTx({l;,m . QN|x{l/ ,m Q) and initial
= [(dQ;/(4m))AB, and using bra-ket notation, we rewrite congitions determined by (x({1 .M/, Q)| ped{ Q1)
the equation in terms of the adjoint operatf, x({17,m’,Q,)). As demonstrated in the next section, diago-
;o nalization of even the simple two dimensional requires some
Ol m, QD) lexg DX m{ L Qi) ped {1 Qi) approximations, but excellent agreement with simulation at
=<9XF{DTt]X({|i mL Qb [xdl,m ,Qi})peq({gi}» fairly strong interactions requires only a few basis elements.
The truncated basis set approach outlined above applies to
6) many different systems. The only requirements are a com-
with plete basis set and local coupling between elements of the
basis set. If this is not the case for the chosen basis set, a
different basis set should be explored. As an example, in Sec.
V we use the collective spin wave basis set to capture the
long time low temperature behavior of a single rotor. These
The equilibrium and dynamic parts can be separated by usingsults demonstrate the importance of choosing a proper ba-
basis set completeness, 1=3|x({l;,m;,Q})) sis set.
X{x({li,m; ,Q})[, which results in the expression The basis set approach can also be interpreted as a pro-
. jection operator technique with projection operators defined
(exd Dt ({1, my QD) X1 m Qihped {211) by =il xi){xil, where the sum is over the elements that span
the range of the projection. This simple result is discussed in
= E (exd DI ({1, m , Q) [x {17, m{", Q1)) Appendix A. Appendix A also shows the equivalence of the
Iim; standard GLE approach to this projection operator. This re-
"o 0. _ I 0. sult is expected since most of the results of the projection
XA m Qb ped { QD XA .M, Q). (8) operator approaches do not depend on the specific form of
In this expressionpe{{{};}) can be considered a self-adjoint the projection operator.
operator. The equilibrium contribution is the initial condi-
tions for the propagation of the equation and can be replaced
by nonequilibrium initial conditions. The high temperature ||| SINGLE ROTOR CORRELATIONS IN THE

limit, B=0, corresponds to free diffusion with a diagonal TWO-DIMENSIONAL SHORT RANGE MODEL
correlation function,

D'=Do2, [Vh, ~[Va,AV({2D]IVa ] (7)

To maintain consistency between the two-dimensional

(exd =Dt Tx({l; . m, QD IxEl .M, Q})ped {Qi})) model and the general framework outlined in the preceding
section, we define our single particle basis set for the two-
=11 & 1/6m wexd—N{l;,mMbt], (99  dimensional model with the sine and cosine functions. In

i il i T

three dimensions, the cosine function corresponds te'the
where\ ({I; ,mi})=D02iIi2. Since each dipole is acting in- ;phencal ha”f“"”'c.- The chomg of thesg tngonometrm func-
s = L tions makes it easier to visualize. To simplify notation, we
dependently in this high temperature limit, the decay of the,".~ .3 o .
. . . : define uj;=cos(-6) and uf;=sin(-6), and denote the set
dipolar orientation,{cos((t))cos@(0)), will decay as a il 721 as g, and iy as /. With these definitions, the
single exponential which is consistent with normal Debye Ig{iér,:l:[liial S Kiiy @l Hai @S K :
behavior. Adding interactions will naturally cause deviations”

from this behavior.

As in quantum mechanics, if the angular dependence of 'BVZ‘]ZJ B T (10
the potential comes from a bilinear form, we can express the
potential as the product betweery () and Y;,(Q)) with
spherical harmonics. The potential couples basis set elements 1 0
whose angular momentum quantum numbérs,differ by T, ‘:(0 _1>(5j,i:(é)_5j,it(2))- (11

one on two rotors or by two on a single rotor. This scenario
is similar to the spirit of mode coupling with the hierarchical The Kronecker delta ensures nearest-neighbor interactions
coupling structure. For a weak potential, the fast decay of thevith the proper directional dependence. From our definitions
diffusion term exp—A({l;,m})] dominates the modes with of w;, we build an orthogonal basis set, which can be
large A ({l; ,m;}) values and the potential term can be ne-blocked into several groups,
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Ap=1, lowest order truncation allows us to exactly diagonalize the
_ diffusion operator within the basis set by defining Fourier

(ApfF=\2uf, modes,

(ADsP=2uiul  (j>0), (AD)=\2m3, (12 L

(ADET=2%200 by (k>j>i), @ui=[ 2 exp—lk-D@)f,

A B=25% 0B (j#i), (A =\2p%,
(A3)i] Moipy (] (A9)i Hai whereN is the length of the latticd, is the imaginary num-
ber, andi refers the lattice position. The Green’s function

This basis set is orthonormal with respect to the inner-becomes

product(A|B)= [TI;(d6;/(2))A'B, which is not the ther-
mal equilibrium average used in most GLE formalisms. R VTR

. . S ay)ye “((ayyl, 16
Throughout this paper italic characters, suchi,as and k kZi (320 (@i (16
refer to a lattice positionx andy, and the greek characters,
such asa, B, Y»Le:ffr to the two vector components, sin or wherel---) and (- | represent the bra-ket structure and the
cos, SO thatM”:(g):COS(’@(g)) and M,i:(g)=SIﬂ(|'0(g)), eigenvalues, \,, have a simple form, \,=—[1
wherel =1, 2, 3 in the basis set defined above and we drop™ 2J(C0SkJ —cosk))]. This expression shows a complex
the 1 for thel=1 term. The order of the italic characters Vector dependence of the relaxation. The srkalector re-
corresponds to the order of the greek charactfirst posi-  laxation is similar to the relaxation predicted for free diffu-
tion of the italic characters corresponds to first position ofSion because the interaction is short ranged. For lakger
the greek characters, etcAlthough higher order basis func- Vectors, the effects of the lattice structure on the relaxation
tions can be included, we truncate the basis set at third ordép®cOme apparent. The relaxation in thelirection is faster
From this basis set we are able to evaluate @Y. The A, than free diffusion while the relaxation in thedirection is
basis functions do not couple to any of the odd modes, unlesgower. The favorable interaction for the cagtos( - 1) re-
we apply an external potential, and will be neglected. A@e sults in faster relaxation for thedirection and the unfavor-
basis functions do not couple to thg basis set and will also able interaction for co§()cos(0ii((l>)) results in the slower

be neglected. These approximations leave us with three typ@g|axation in they direction. In the large lattice limitN

of basis functions, which we will label a8;—a;, A; ., the single rotor orientation correlation function be-
—a,, A—aj. In the diffusion equation, Eq1), we rede-  comes

fine time to make thermal diffusion unity so that the adjoint

diffusion operator becomes (cog 6(1))]cog 6,(0)))
DI=> —ai,—(zJZ G;.Tij.ﬁi)agl, (13) _1f dky dk,
! j#i =5 25 Eexr[—t—ZJtcos{kx)

W.h_ere (ﬁj’)a:(-yoj.ﬁfz{—sin(ai),cps@)}. With these reQefi- +2Jtcosk,)]
nitions, the adjoint operator acting on the basis functions
gives =e U3(2J1), 17
+ a__ a_ aé¢E aéTévoy
D (ay)i="(ay); \/EJT” uj+\/§J(BZ)i i) '(14) wherel, is the zeroth order Bessell function, and time is
S o . scaled so thaDy=1. The first order calculation is easily
Summation is implied for all repeated indices and we intro-generalized to any bilinear potential with a well-defined dis-
duce a matrix operator to simplify notation, crete Fourier transform, by replacing the dgg) terms with
cogmé;)  sin(mé,) the appropriate transfer matrix, which may mix the &in(
(Bn)i=| _. . (15 and cos@) basis sets. The result also extends to the three-
sin(mé;) ~ —cogmé;) dimensional case with the appropriate transfer matrix. As
It is important to note that the first number iB,{); does not mentioned above] is scaled byg/2 and time is scaled so
refer to an index. The product oB(,);U; is a vector formed thatDy=1.

from a sum of products ofcosfné),sin(mé)} and can be In the long time limit, the orientation correlation func-
decomposed into several elements of our basis set and shouldn decays with an effective diffusion constames=1
not be regarded as a single term. —4J. This result is reminiscent of the effective diffusion con-

stant on rough energy surfaces derived by Zwaf%igor
weak interactions, there is no collective motions. Each rotor
moves independently and the interactions simply impede the
motion of the rotor, which slows down the overall rate of
The simplest approximation ignores the coupling to ba-diffusion. The Bessell function comes from the integration
sis functions outside of thea() class and the equilibrium over cosk,) and cosk,), which is similar to Zwanzig's pre-
contribution since these effects are small for sndallThe  scription for calculating the effective diffusion constant,

A. A simple first order ansatz
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A 1 T T ' T , T T B. Higher order approximations

5 - Ist order bases expansion to the Green'’s function
Sos - 121?1 E’;‘ff :ﬁ‘:ﬁ;g"iﬁgﬂg:ﬁm . At the simplest level of approximation presented above,
8 e P the basis set was easily diagonalized. For a more compli-
% 0.6l | cated higher order approximation, this is not necessarily the
= ] case, but we can still include effects from higher order basis
= 0 set elements and achieve better agreement with simulation.
Z 04 \. T To achieve this goal we determine the coupling between the
= o\ 1 basis elements presented in EtR). The procedure produces
§~ 02l O - an equation of the formg,A(t)=MTA(t), whereA(t) de-

z \\\ l notes the coefficients associated with these basis set ele-
v 0 | "I* N ments, and the elements of the basis are denoted by omitting

=)
)
IS
=N
co

10 the time parametet; and M is a matrix determined by the

diffusion operator,M;; =<Ai|DTAj). The time parameter is
FIG. 1. (cog 6(t)]cod 6(0)]) autocorrelation function fod=0.20. Note that omitted smcg we are refemng_to the basis fu,nCtlons' N.OFe
the highT direct perturbation result fails to fit the simulation even for this that the matrix is transposed since we are using the adjoint
weak interaction, but the first order basis set has good agreement. Theperator and the basis functions are real. The matfixcan
memory kernel result is not shown since it would be superimposed on th%e subdivided into submatricest:; that Correspond to the
second order basis set result. 4 )

overlap of elements of the; and a; subsets of the basis

functions,

Dot

My My Mys
M=| My Mz My |. (19

Def=D -[fﬁexq—ﬁvw))“j%exqjﬂBV(&))
e 2m 2m , Mz Mszy Mas

(18)
It is difficult to find the eigenvectors of this matrix, even
numerically. Approximately inverting the matrix is simpler
with D, being the free diffusion constant. so we take the Laplace transform of the equattenz, and
T1-1 i i i
Within the first order calculation, the relaxation of aky the propagator becomész+ M| %, with the identity op-

vector is given by exponential Debye behavior, but the relax-eratorl’ and Laplace variable. From an arbitrary initial

ation of a single rotor, which is a sum &fvectors is non- condition,a;(t=0), the value of they (1) basis functions at

) i a future time is given by the inverse Laplace transform of
Debye. The Debye behavior for first order comes from the ¢ y P

simple Fourier diagonalization scheme that results in simple 5 (7)—|z+ Mty (t=0)+[1z+ MT]tay(t=0)
first order harmonic expressions for the relaxation of each

mode. As the temperature is lowerekincreases, higher or- +[1z+ M) 5'a5(t=0), (20)
der effects explored below cause the spectrum of relaxation

times to deviate from a monoexponential resulting in non_whereal(z) refers to the Laplace transform of the value of

Debye behavior for the relaxation of a single dipole and eacrghe Co.eff'.c'e”‘ as;puated with tiag ba.ls.'s set and;(t=0)
the initial condition for these coefficients. We cannot ex-

) o

k .v;]ac:]orf.componfnt. The;e f'rhSt order rgsult arg ConSISterﬁctly invert the matrif1z+ M"] so we must introduce some

with the finding of Berne that short range interactions do ot yimations. Our first order result corresponds approxi-

lead to nlon-Debye behavior on long length scales, §k)all mating the off diagonal blocks in the first row dfz

but as will be shown below, more accurate calculations by} AT} as zero so that the values of tlag basis set are

incorporating higher order effects lead to non-Debye relaxindependent of the higher order basis set elements. Higher

ation even for systems with nearest neighbor interactions. order approximations require more accurate forms for these
The first order result appears to be crude and the solutiomatrix elements. The exact forms of the matrix elements of

diverges atJ=0.25, but the agreement with simulation is M;; are presented in Appendix B. We can formally rewrite

good forJ<0.20. Figure 1 shows the good agreement, andhe il blocks of the inverse of the matrptz+ M] as

Sec. IV discusses the reasons for the success of this simple .

: o o (Iz+ M)t=(z+ Ml L

first order ansatz. By inverting the diffusion operator and 11 11

finding the eigenfunctions, even at this level of approxima- _ . 1

tion, partially renormalizes the quantities, which improves (124 M)ay = (124 Map) " Moi(12+ Mgy)

the agreement by captur!ng the collective behgwors of t.he X Magy(1z+ Mj) L, (21)

system. In the next section we elaborate on incorporating

additional pasis functions -into our expansio.n, Whi.Ch allows (124 M)gt=—(1z4+ Mgx) *Mg(lz+ M)~

us to achieve an exceptional fit to the simulation fbr

=0.30 and have a reasonable fit fb# 0.35. where
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M=M= M1+ Mg ™ * Mgy chi and Chandra and has been demonstrated to reduce if not
. . eliminate non-Debye behavior in dipolar systeti®erne’s
+ M2+ Map) " " Mos(1z+ Mszz) ™" Ma;. calculation also had translational motion although he did not

(22) analyze the interplay between translation and diffusion. The
) ] ) ) role of translation on non-Debye behavior in systems with
This result follows from solving the block matrix equations: ghort range interactions requires further investigation, but we

B.. B, B A A A expect that translatior] will have an even stronger effect on
1T s 1z s the non-Debye behavior of short range mod®éls.

Bar Bz Bag|| Az Az A The other two blocks are easily expressed as products of

B3; Bsy Bss/ \ Az Az Agg the inverse of the 11 block expression in EB4) with the

coupling matrices,
Ill 012 013

1
= 0 | 0 *1%— r1—1
b1 oo Oa3f, (23 [1z+ M]3y (253)(z+5) MosMa[1z+ M']i1,
O3 032 s (25)
for each elemenB;; , wherel;; is an identity matrix for the [Iz+M]§ll~mM3][|z+M’]*1.

sub-block and); is a matrix of zeros. The simplified form
follows from the elements of th&15, being identically zero. The indexes are omitted, but follow the notation above. It is
It is important to note that we have calculated thesemportant to note that the inner product is over both the
quantities for the adjoint operator so the contributions to thespinor variableg«,8) and the positions(i, j, etc), but the
propagation of the elements of the,j basis set comes from /2 cos@) basis function and the2 sin(@) do not mix at any
the (1z+ /\/l)i’ll terms instead of thelg+ /\/l)l’il matrices  order of the expansion because symmetry prevents a prefer-
that result from using the original diffusion operator. We only ence for any directions. This result is related to the failure to
need to calculate these block matrices to determine the singferm long range order for isotropic interactions in two-
spin autocorrelation function, but other matrices may be necdimensions. The expressions in Eg4) and Eq.(25) are the
essary to calculate higher order correlation functions. Thesapproximate second order description of the dynamics that
equations are reminiscent of the results derived from thare needed to calculate the autocorrelation function for a
standard projection operator techniques, where the higher osingle rotor,(cos(t))cos((0))). Because we neglect near-
der effects of the dynamics become a nonexponentiakst neighbor interactions for the higher order basis functions,
memory kernel. Up to this point the calculation is formally the Fourier modes in Sec. Ill A diagonalize this matrix. They
exact except for the truncation of the basis set to the eleneed to be supplemented with the initial conditions, which
ments ofa,, a,, andas. For small values of], the terms are determined by the equilibrium distribution.

resulting from the diffusion operatd]DoVéi dominate the
higher order basis functiona, andas, and we can assume
that they are approximately diagonal{,,=(z+3)l,,, and  C. Equilibrium contribution

=(z+ Cltisii - . .
Msa=(2+5)15. Itis important to note that these assump Although the basis set approach does not require the
tions do not capture all of the second order contributions, but .= .= "<. . . : oo

. _— . equilibrium initial condition, we will use the equilibrium so
the omitted second order contributions result in an expres:
that we can compare our results to the standard GLE ap-

sion that changes sians a_nd give a partial cancellqtlon—aroach. The initial conditions are the result of evaluating the
random phase approximation. Under these assumptions, v%

evaluate the matrix elements diz(+ M),’ll. The form of the oltzmann distribution,
11 block greatly simplifies Xm0 | peg{ Qi [x {1 m, Q). (26)

2 The equilibrium distribution can be determined by finding

1
([|Z+M1ﬂ)ﬁﬁ*(2+ 1+ m) 5P 5 the eigenfunction with zero eigenvalue, but as mentioned
above, determination of the eigenfunctions and eigenvalues
12J? is difficult for a (infinitely) large matrix. Instead, we evaluate
+‘]( 1- (z+3)(z+5) the equilibrium distribution perturbatively. The method fol-
lows the derivation of Rosenberg and L2¥:*°We per-

The Fourier transform introduced in Sec. Ill A also diagonal-form a Taylor expansion of the canonical partition function
izes this matrix so the inverse can be calculated analyticallyng evaluate E¢26) term by term,

although the inverse Laplace transform requires numerical L - 5

calculation based on this analytic expression. It is importanfeqd™ nexg = BV]=n(l=BV+3BV) —s(BV)"+),

to note that this calculation, without considering other terms, (27)
already shows deviations from Debye behavior for eMery where 7 is the normalization constant. Due to rotational
vector even for this locally interacting model. This result issymmetry and lack of long range order, the correlation of
very different from the mean field calculations of Berne,(peq({ei})cos(&(O))2>=1/2 for all interaction strengths, so
which predicted that only long range interactions caused dewve impose the normalization at the end of the calculation.
viations from Debye theory in the smadlimit.%* The effects  The equilibrium contribution is calculated for terms that con-
of translational motion on the relaxation was studied by Bagiribute up to second order id. For interactions between

(MF. (29
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elements of thex; subset, the contributions come from the The normalization for the autocorrelation functions is one

nearest neighbors and the next nearest neighbors, because the basis functions are properly normalized, al-
(A pedan)® =1 though [ d6;/(2)cos@)?>=1/2. We only need the equilib-
Vi’ Ped )i ' rium contribution to first order for the higher modes since
. N J3 their dynamics contribution is first order th These contri-
<(31)i peq(al)ii(é]> =—J+t 5, butions are easily related to the dynamical parts calculated in
o Appendix B,
@ J3
<(a1)i“peq(al)i+(o)>=\]—?, (Qape@a) = — 3Ma,
e _ 1 (29
N o 5 (28) (A1pe3) = — M3,
<(a1)i peq(al)ii2(3)> - where M,; are the matrices defined in Sec. Il B and Appen-
dix B.
@ a _ 12
<(a1)i peq(al)it2(2)> =J5 Combining the dynamic and equilibrium parts gives the
N final expression for the Laplace transform of the single par-
<(al)iapeq(al)i:(?]:(:>(‘é)> =-2J2 ticle correlation function,

2

1 . ]
peqalxiﬁal,i :[IZ+M11]i’i —4] 1—?

rq71 rq71 ’
[Iz+/\/lll]i+(é)’i+4J2[Iz+/\/lll]i+2(é)’i—8J2[Iz+Mll]i+m,i
4J3 r 91 ‘]2 r1—-1
+—(Z+3)(Z+5) [IZ+Mll]i+(é),i_—(z+5) [IZ+Mll]i,i . (30)

In this expression, terms have been combined since elemertermine the equilibrium correlations and comparing them
of the matrix, such a:Mi,ii((lJ), are related to other elements with the Brownian dynamics initial conditions.

of the matrix, such ad/; ;.. ¢ . The expression above can be The comparison of these simulations against the trun-

evaluated to determine the single particle correlation func:catEd basis expansion and the perturbation methods outlined

tion. As discussed previously, the Fourier modes diagonaliz'en Appendix C are plotted fod=0.20, 0.25, 0.30, and 0.35

the matrix[1z+ M;,] so the inverse can be done exactly, but" Figs. 1-4. In Figs. 1 and 2, the memory kernel expansion

. is omitted since it is close to our basis set solution. From
the Laplace transform must be done numerically. These re:

. . . . these figures it is evident that the basis set approach matches
sults are compared against a simulation and previous aq- . . . ;
roaches to lattice dynamics in Sec. IV he long time behavior of the simulation better than the other

P T methods for all values al. As mentioned in Sec. Il A, for
J=<0.25 even the simple ansatz is comparable to the other
perturbation approaches. Fdr>0.25 the Bessell function

IV. COMPARISON WITH SIMULATION result predicted by the first order result in E@L7)

AND OTHER METHODS

We choose this simplified lattice system to allow com- T , T

A
parison with very accurate Brownian dynamics simulations. é — Ist order bases expansion
The simulated system is a square lattice of rotors with peri- © g — 2nd order bases expansion
odic boundary conditions. For a given coupling strength, g - high-temperature perturbation| |
the length of each side of the lattice is increased by 4, until ¥ - simulation
there is an agreement for three different lattice sizes. A lattice é 06 N _
size of 40 is found to be sufficient for simulations with <. Y
<0.5. This range of interaction strengths is below the S 04k N\ .
Kosterlitz—Thouless phase transition temperature0.55, § \' N
that has been examin_ed extensively elsewhere,_ so finite siz g_ o2k \\ |
effects should be minimaP—>841-43Similarly, the time steps Z s
are adjusted by factors of 2 until there is an agreement 9 R m—— o __
between three consecutive time steps. Under the Brownial 0 3 B e— E —— === 10
dynamics the system is allowed to equilibrate with a time Dt

determined by achieving agreement in the equilibrium corre-

lation function of the lattice with random initial orientations 7' 2 (co46(0cog6(0)]) autocorrelation function fod =0.25. The first
. . . . . . - . ._order result begins to break down, but the agreement between the second
and orientations in a single direction. The equilibration iSgrger result and the simulation is excellent. The memory kemel result is not

also verified by performing Monte Carlo simulations to de-shown since it would be super-imposed on the second order basis set result.
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' T ' T , tion. Although we do not present a full analysis, these diver-

— 2nd order bases expansion 1 gences are canceled by coupling to higher order spherical
08 - high-temperature perturbation| _| harmonics2 |;>5.

-= memory kernel expansion The cause of the divergence for strong coupling is also
o ©_simulation | the reason for the success of this basis set expansion. The

divergence results from the basis expansion capturing the
1 collective behaviors of the rotors. A perturbation expansion
- corresponds to only calculating the nearest neighbor interac-
tions, which does not capture the entire collective motions.
As a result, the perturbation expansion is always a multiex-
ponential. The memory kernel expansion also includes inter-
actions among basis functions in a perturbative manner that
20 will always result in exponential long time relaxation. The
D.t memory kernel expansion captures the short time mean field
dynamics since the equilibrium contribution is incorporated
FIG. 3. _(co{a(t)]qos{a,(O)]) autocorrelation function fod=0.30. In this into the expansion, but it does not directly incorporate col-
I'i?;’Tg'ng'fif:;pggciﬁ;bem’ee” the memory kemel result becomes apparentil(iye gynamics. This feature is very evident in Figs. 3 and
4. The memory kernel expansion does a better job than the
basis set expansion at capturing the short time behavior since
the equilibrium distribution is better approximated in this
outgrows the exponential term and the correlation functionexpansion, but the fit starts to deviate from the simulation
diverges. This prediction implies that the collective motionscurve fort>6. In contrast, the basis set deviates slightly
of the system are stronger than the dissipation of free diffufrom the simulation for intermediate times, but the calcula-

sion. At this coupling strength, the system finds an additionaion starts to fit the simulation data very well for longer
mechanism for dissipation through coupling to higher basigimes.

functions. This result indicates that the hlgher order basis The agreement for short times is the result of the cou-

function become important dt~0.25. pling between basis functions being retarded, so that the ini-
The second order basis set result incorporates thesgy| process corresponds to diffusion in a mean field environ-
higher order contributions in the simplest form, an extra cOUment that is not correlated to the motion of the rotor. Since
pling between the first order basis set elements. These addje incorporate the equilibrium distribution, the shape of the
tional terms remove the divergenceJat 0.25 and push the potential energy surface &0 is approximately correct re-
point where the coupling is stronger than the free diffusion tOsulting in the proper equation of motion. At intermediate
higher values ofl. The simplified incorporation of these ex- times, the collective motions begin to play a role causing
tra basis functions assumes that the element3gf and  geyjations from the behavior predicted by the basis set cal-
M3, are zero and the off diagonal elements\db, andMazs  cylation. The two contributions to the collective behavior
are also zero. These off diagonal terms result in similar exgome from coupling between the first order basis set and
pressions to the one that diverges in the first order calcuIaCOUp”ng between the higher order basis sets. We treat the
first order basis sets exactly, so that we get the contributions
from their coupling correct. The contributions from higher
, . , . , . order basis sets are treated approximately, but since the free

=
'S

¢
[

<cos[91(t)]cos[Gi(O)]>/<cos2[9i(0)]>

(=)

(=)
v
=
5

- - | diffusion term causes these contributions to decay faster than
— 2nd order basis expansion S . . .
08 - high-temperature perturbation | | the contnbgnor_ls from the first order basis §et, these higher
-— memory kernel expansion order contributions become small at long times and better
*_simulation 1 agreement at longer times is achieved. The memory kernel
0.6

T expansion captures the dynamics in the initial time by incor-
1 porating the correct mean field results, but it does not com-
pletely capture the collective behaviors that are important at
longer times(See Fig. 5.

As the interaction strengthl, increases, the collective

<Cos [Gi(t)]Cos[Oi(O)]>/<cosz[9i(O)]>

02 T motions of the rotors become more important causing a slow
1 down in the overall relaxation. The slow down of the relax-
0§ L L L T a'Fion time is demqnstre}ted Fn Fig. 6. As can be seen from
D.t Fig. 6, the relaxation time is a strong function &f The

calculated relaxation time is in good agreement with the
FIG. 4. (cog A(t)lcod 6(0)]) autocorrelation function fod=0.35. In the ~ Simulation, but the calculation systematically underestimates
short time the memory kernel expansion achieves good agreement with thg¢ie relaxation time. The calculation predicts a divergence in
simulation, but discrepancies between the memory kernel result becomﬁ1e relaxation time al=0.38 Considering the predicted KT
apparent in the long time regime. Conversely, the basis set expansion haai_I . .

good agreement at extremely short and long times, but deviates slightly foPaS€ transition al~0.55 discussed belovBec. V) and the
intermediate times. power-law behavior of the simulation d&=1.0, the diver-
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A 1 T T T v T T V. LOW TEMPERATURE PHASE

@_ _ §g}}{‘£§§3§ 1 As discussed above, this system can be mapped onto the
N% 08 T E T plane rotor model that has been extensively studied in the
3 TTTTTeeTeEmeeee——— field of high temperature superconducting physfes?If we

% 0.6 . apply the mapping outlined in Sec.[ (65— 6,;), (02i+((1))

) == 02i+(y), (O2i =T b2i1(%), and @i ()= O2i ¢

S o4l - — )], the potential becomes

S

S 02k . BV({6.})=—232, cos 6= ) (8i+ 1)+ 8+©). (3D

§ i

v 1 1 | 1 .

% 1 2 3 4 5 The low temperature phase of this system possesses the ex-

Dyt otic Kosterlitz—Thouless phase transition, where the system
fails to achieve long-range order at a finite temperature, but

FIG. 5. The behavior ofcod 6(f)Jcog 6(0))) for J=1.0. The low tempera- o gistance dependence of the correlation between orienta-
ture regime requires collective spin-wave modes. The spin-wave captures

. -38,41-43 ;
the correct initial decay since the potential is approximately harmonic an&'f)ns_Of 'jOtor IS a power laf Altho_u_gh discrepan-
the spin-wave solution agrees with the long time power law. The deviatiorcies in simulations exist, the phase transition occurs around

in th_e intermgdiate_time is cau_sed by the_ potential not being perfectly harg) g5« (,8V)71< 0.95, whereg is the inverse temperature.

gm;cinTthheeSégxgﬂggvh:;pﬁ:ggthgpmf Ssi'éigtfiif]t_ that causes some unce‘:I‘hi_s temperature correspondse-0.55, which is above the
region that our basis set expansion is accurate so we intro-
duce a spin-wave basis set that captures the collective modes
of the system at lowr.

The harmonic basis set expansion is applied$ol.0.
gence is expected for the system although the position of thghe simulation is the same as the high temperature simula-
divergence is difficult to determine from the simulation. Thetjons, but a slightly larger lattice of 5252 was required, and
strong dependence ahcomes from the increasing impor- some size effects are still present even for this lattice. A
tance of larger clusters of spins. Eventually, all orders of thesomparison of the simulation and the spin-wave solution is
single rotor basis functions are necessary to capture the cobresented in Fig. 5. At low temperatures, a single rotor
lective motions on long time scales, but the short time stillspends most of its time in the bottom of the well formed by
depends on the motions of individual rotors in a mean fieltthe interactions with its neighbors. Due to the periodic nature
potential and is captured by this basis set, as long as thef this potential with only a single minimum, even if the
proper zero time correlations are incorporated. Capturingotor hops over the barrier, it returns to the well from the
longer time collective behavior requires the introduction ofgther side. As a result, the movement of a single rotor is not
another basis, such as the spin-wave basis. In Sec. V, Wgnportant for long time behavior. The important motion on
discuss the role of spin-wave modes for long time behaviornong time scales is the diffusion of the well, which is a col-
We also relate these considerations to similar results found ictive motion that depends on the movement of the neigh-
Langevin dynamics and mode-coupling theory. bors. We make a harmonic approximation for the well with a

single force constank. The potential becomes 2J cos@
—g)~—const-(1/2)x(6;— 6;)%. Mean field variational ar-
guments determines that the force constant of the harmonic
5 : | : | : | : pseudopotential is given by the expression found in a refer-
ence,x=2J exp(—1/(4«)).** ForJ<0.34=J., the only so-
lution to this equation is«=0. ForJ=J., « initially grows
as (0—J.) Y2 For largeJ>0.34, x approaches the value af
as a power law, £/2J)—1—3J"1+0(J~?). This behavior
is common for mean field solutions.

Standard analysis gives the Green’s function for the mo-
tions of the harmonic modes of the systéspin wavey 6,
=(1N)Z; exdlk-j16;. The (cos@(t))cos@(0))) correlation
function becomes a result of simple Gaussian integrals,

— 2nd order basis expansion
* simulation

(cog6;(t))cog 6;(0)))

. . . . 1 Dot
0 0.1 oj_z 0.3 0.4 = Eexp( 2| ar exp(—2dkt’)13(2«t") |, (32
0

FIG. 6. The mean relaxation time of a single rotor as a functiod. @he . . . . .
relaxation time is a strong function dfbecause of the increasing impor- Whered is the dlmen5|0n of the |att'?e- Fadr=2 the.mtegral
tance of collective motions. in the exponential resembles the first order basis set result.
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Since the Bessell functiorly(t), behaves as ({2xt)e! additional relaxation mechanism that occurs at intermediate
for large values of t, we can approximate times. As the temperature is lowered, the importance of the
—2f§°tdt’ 12(2kt")e 22 as cons+—2f8°: dtt  hopping mechanism will reduce. The hopping causes a loss
00 i i i _
X[1/27(2K)t"' ] = const-(1/2mx)In(Dgt’). In this expression of cc_)rrelatlon.s, Wh|c_;h reducgs the overall height of the cor
relation function as it enters into the power-law regime. This

tp is a time where the approximation becomes valid. Sinc 0ss is not captured by the spin wave. However, barrier hop-

the Iolgt_ls mdthe ex.ponenual, tTe res_L:Emg explrlessmn fortthﬁaing is not as important as expected for a single well periodic
correration decay IS a power law with a smal exponent o potential since the particle will enter the well on the other

_1 i - i . . . . . . .
(277"') q - This powzr law gecaydls EXpZCtEd forha strongIIySIde. As discussed above, it is the diffusion of the well itself
coupled system, and can be understood through an analogy, jominates the long time relaxation. Since the well is

with Goldstone modes. As thevector of the normal modes formed by four nearest neighbors, the relaxation of the well

goes to zero, the force constant of the modes, i.e., density ¢ yetermined by collective motions. The time separation of

states, also goes to zero and at any time scale there is alwayg, e particle intrawell relaxation and the collective relax-

a slow component, which results in the power law. Interestyiqn of the wells makes the harmonic approximation of this

ingly, for d=3 the integral is finite and the correlation func- |5ng time relaxation accurate, which results in the agreement
tion does not decay to zero. For 1, the long time behavior 4 the power-law exponents.

of the integral istY? and the system behaves as a stretched
exponential. The stretched exponential occurs naturally i/, CONCLUDING REMARKS
this calculation and demonstrates the role of the density of

states around zero in determining the long time functional !N this paper we examined a two-dimensional rotor
form. In analogy to thermodynamics, three is the critical di-model with local interactions. By using different truncated
mension basis sets, we are able to capture the behavior of this system

As seen in Fig. 5, similar to the results with the high in both the high temperature and low temperature regimes.

temperature basis set, the spin-wave approximation crclptun!—[.\:hso r v_et[y hlgth temhpe(rjature, Lhet;]otor_ls_hgct mdelztpe_ndlently{_ but
the short time behavior fairly well since the potential is ap—Dek')r n erflm |otr_1§ m_tﬁr eacedo eedr. d.f;s r_isu Csolnton? ::me
proximately harmonic. For intermediate times there is a cebye relaxation with a reduc tusion constant. -or

. . . stronger interactions, the rotors begin to show collective mo-
slight discrepancy between the behaviors of the two systems. . . .

7 h . : lons, which results in strongly non-Debye behavior. At
This effect is a result of the potential being not truly har-

monic and allows additional relaxation through defectsIower temperatures, the system behaves as a spin-wave sys-
L . o tem with long time power-law relaxation.

which is similar to defect mediated melting in the KT phase As demonstrated for this simple planar rotor model. gen-

transition®6—3841-43The simulation and the spin-wave solu- piep ' 9

tion behave as power laws in the long time limit with similar eralized Langevin dynamics can be applied in various forms.
P 9 The basic requirement is the ability to approximately remove

) . o . USome degrees of freedom by introducing a memory kernel.
the simulation result, Wh.ICh IS apprpmmately 0.072. Al- The Stangard approach to d>elriving the gLE is Withyprojec-
though the defect relaxation mechanisms that are not cage,, oyerator methods that use a specific projection operator
tured by the spin wave may cause the discrepancies, a flnlt(%r inner-product These projection operator approaches
size effect causes uncertainty in the simulation exponent s, e peen successfully used in many applications. One dif-
the spin-wave prediction is well within the error in the mea- .ty with the standard projection operators is the restric-
surement of the simulation result for low temperature. tion on the basis elements and the incorporation of the equi-
Considering that both the simulation and the spin-wavepiym distribution in the inner-product of the space. If the
calculation behave as similar power laws in the long time;qor orientation is the desired quantity of interest, practical
limit, the spin-wave basis set appears to capture the f””d%plementations of the standard projection operator ap-
mental long time relaxation mechanisms of this system. Theoach restricts the basis set to one that contains the single
deviations occur during intermediate times before the systerfyior orientation. The basis set of individual rotors is not
enters into the power law. From this point of view, the errorgrthogonal with respect to the equilibrium weighted inner-
in the calculation appears to be caused by a weighting beyroduct, and applying the Gram—Schmidt procedure is nec-
tween short time components of the relaxation and the |0n@ssary, which can make the equations complicated and ob-
time power-law components. The spin wave simply overesscure the physics.
timates coefficient of the power-law contribution to the re-  Another approach to generalized Langevin dynamics is a
laxation. basis set approach. In this approach, we choose the basis set
The failure to capture intermediate time correlations, butand then define the desired quantities in terms of overlaps of
the success at capturing both short and long time behaviokge basis set elements. Different basis sets may have an ad-
can be understood through barrier hopping. The short timgantage over other basis sets as shown by the spin-wave fit in
agreement is caused by intrawell relaxation that is capturethe low temperature and long time versus the single particle
by the harmonic potential. The deviation at intermediatebasis set in the high temperature and short time. This ap-
times is caused by a barrier hopping mechanism. For theroach is also a projection operator technique, but the pro-
harmonic potential, the system can only relax by slidingjection is with respect to the basis set instead of the measured
down the sides of the well, but the real system has the abilitylegree of freedom with an equilibrium weighted inner-
to jump over the barrier to the other side, which adds arproduct. In this approach the projection operator is tempera-
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ture and interaction independent. One can easily perforrdistribution. This definition is not necessary and results in a
transformation on this basis set, like the Fourier transforntomplicated expression fd¢,, and forces us to use Gram—
performed in Sec. lll A. This truncation is independent of theSchmidt to construct an orthogonal basis set,

equilibrium distribution, which may be useful in studying Q,=A

systems far from equilibrium. The basis set has the ability to 1
capture collective motions that are omitted in the standard ~ Q,=A;—(peA2Q1){(pe1Q1) Q1,

projection operator approaches, which is important in differ- B Al
ent applications. Qa=As— (PeP3Q1){PeR1Q1) Q1 A
The two approaches to deriving generalized Langevin —<pqu3Q2)<pqu2Q2>_lQ2,

dynamics are complementary, as are different basis sets, and
should be used together to determine various properties of
the system. The standard projection operator approach accgine equilibrium weighted inner-product must be evaluated
rately captures the many-body equilibrium effects while theith perturbation methods, and the equilibrium distribution
truncated basis set approach captures collective motions dé\'ppears in many places in the expression, unlike the inclu-
rectly. These two strengths will be combined in future studies;ig, in the initial condition in the basis set approach. Many
of these Brownian dynamic systems. The inner-produchs these terms cancel, but the algebra is increased greatly.
space, which defines the projection operator, should be cherhis expansion makes the basis set elements complicated
sen to reveal the desired physics. As is standard in lineagnctions of the perturbation parameter. As a result, one does
algebra, proper choices of basis sets make computatiofot necessarily achieve higher accuracy by including the
easier. The basis set approach is used to determine the Profjuilibrium distribution in the inner-product.
erties of the facilitated kinetic Ising model in a companion The complications caused by the equilibrium distribution
paper* Future work extends this approach to a dipolar sys¢an be avoided by using an unweighted inner product. At
tem that is similar to the original model studied by Zwanzig, aach order in the expansion, the resulting equation is equiva-
but where disorder in the particle positions is introdut@d. lent to the standard GLE since the two expansions only differ
by higher order terms. The GLE can be calculated from the
ACKNOWLEDGMENTS basis set approach resulting in the expression
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Fund. where() is the decay rateQ =(A;|D|A;)K ', andM(t) is
the memory kernelM (t)=(f(t)|f(t))K;>. The memory

APPENDIX A: THE BASIS SET AND GLE kerr_1e|’s Laplac_e transform can be easily expressed in the
basis set notatioM (z) = M ,C,(z) M,, with

The standard derivation of the GLE equation for many- ~ _ 1 1
particle dynamics follows the Zwanzig—Mori projection op- Co(2)=[Z1= Mag= Moy ZT= Mgg=-+) " Moas] .
erator formalism. The general spirit of projection operator R (A3)
methods is to separate the dynamics into different contribuThe expression fo€,(z) is the result of Mori’'s continued
tions, which can then be approximated through various techfraction.
nigues. The equations after the application of the projection  The projection operators are constructed from the defi-
operator are exact, but the approximations required to evaluiition of the inner-products. To any order in the perturbation
ate expressions will differ with different projection operators. expansion, the projection operators will be equivalent, but
Because the initial equations are exact, all projection operagdor some many-particle systems such as this problem, ex-
tor methods are formally equivalent. The benefits and disadeluding the equilibrium distribution from the definition of the
vantages of using different projection operators will dependprojection operator brings benefits by separating kinetic and
on the application. Hynes and Deutch discuss various classegjuilibrium effects, making the projection operator indepen-
of projection operators and when these operators are geneatent of the order of the perturbation expansion, and allowing
ally applied** Generally, using different projection operators one to naturally change basis sets to measure different ef-
correspond to different representations of the same dynanfects, such as single particle properties versus Fourier modes.
ics.

The quantities that we measure correspond (0 the elezo oo\ 5. \1ATRIX ELEMENTS FOR TRUNCATED
ments of the basis sét; defined above. The projection op- BASIS SET EXPANSION
erators P and Q are traditionally defined asP
= |A1)K1’11<A1| and Q=I|—P. The matrixK,; is the matrix The matrix elements of the truncated basis set expansion
elements that result from the inner product of the elements adire calculated by applying the adjoint diffusion operator to
the A, basis setK,=(A1|A;). The standard GLE approach the basis set element and taking the inner-product of this
defines this inner-product a\|B)= [ dI' ATBpeq. In this  expression with the other elements of the basis set. In these
expression for the inner-produd]” denotes integration over expressions, the basis set elements will once again be in
the phase space ang, is a weighting by the equilibrium tensor form, witha, 8, andy andi, j, k referring to the row
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of the matrix element anél », andv andp, g, andr referring It is important to note thatg>q>r) is part of the definition

to the column. Other variables that appear in the expressiorsf the elements of theap) basis functions so that the per-
are dummy values that are summed over. We also introducerautation gives exp{3t) for free diffusion.

permutation operatol?ﬁfy, which implies that the permuta- The final overlap matrices that we must calculate is for
tion of all variables must be taken. Italic characters still referthe D'(a3) terms,

to lattice position and greek characters refer to &dsgr aén_ «

sin(é). Also following previous notation, the orde? of the (Mu9ig'=((an){"|D(as)5p)

italic characters correspoqu to the .orQer of the greek char- :3\/§J<UF(BD§A>T235ip,
acters so that the expressions are similar to - oDt (8¢

« v «, VI (M 3)9/ k¢ ”:<(a )'q 14 D (a ) 7]>
(Mzz)i,f&fr” :<(az)ij5y|DT(az);§gr : (B1) 2371k 21k 37pa

We used the fact that the basis set is real to exchange the =2%23> <U?(Bi)gk)Tgi57”5kp, (B4)

order in the inner-product. With this notation, the matrix el- PieY '

ements become the overlap Bf (a,){* with the other basis wBén Bl vt \Em

elements, (Maza)ijng"=((as)ii"|D"(ag)pe)
(MaDif=((ap{|D(ay)5) = 8", +ITiE, =56%8,,8° 184+ ITET 6% 5,

a a o N A - ’
(Map){fi=((a,)(f”ID(a)5) =0, (B2) +23(05(Bo) ) ) TAS(GP(B])EY),
(Mai5¢=((a9)"ID" (ap)§) where

o cogmg;) —sin(mg;)
== \/EJ{UEKBz)i )\>Ti}\q7]5ip . (Blr’n)i = ' ' (B5)

. . . [sinm@;)  cogmé,) |’
In the above expression, the dummy indax,is summed

over to give the final expression and the inner-products reféf@s a similar definition asB(,); above. The dummy vari-
to a matrix that is determined by the element by elemengPles\ and £ are summed over all arguments. From these
inner-product. Note the tensor form of the expressions€XPressions we are able to approximately determine the ma-
which is consistent with the formalism presented above witH!ix €lements in Eq.(8), which allows us to calculate the

8, and 8¢ being Kroneckes functions. dynamics of the system.

We get a similar expression for the overlap of the
D'(a,) basis elements, APPENDIX C: DIRECT PERTURBATION AND

MEMORY KERNEL PERTURBATION EXPANSION
atn_ alnt Envy Ensay s . . .
(Mi2)ipg'=((ay){'[D (a2)pqr>_‘]P§Em Tpgd"7dir Figures 1-4 compare our truncated basis set expansion
par with other perturbation methods that have been previously
zz)ﬁfg(ﬁ?V:((az)ﬁm DT(az)EZf used to study similar lattice systems. In this appendix, we

outline two alternative approaches and give the expressions

_ E 5“§5ip5/3”5jq5w5kr that result from these methods.

PegY oY 1. Direct perturbation
+ J/2Ti6:)§55775jq 57 Syr s (B3) The direct perturbation approach has been successfully
. Bt em used to study the Brownian dipolar lattit&This method is
(Maz)iipgr =((a3)i"|D"(az)pqr) =0. easily understood by Laplace transforming the equation

CiP(2) = pedif 12— D" 10f) = pedif[ 12— D§] i) + (pedif [ 1 z— D§] ~*DI[ 12— DJ] ~*if)
+(ped {610 12—DE]~*DI[1z—D§]~*DI[1z—Df]~*af) +---. (C1)

Similar to aboveD] is the free diffusion operator arid] is ~ As we can see, this expression is a simple sum of polynomi-
the term that comes from the interactions, B2). The equi- als multiplying exponentials, which does not reflect the com-
librium contribution,p.{{6;}) is determined using the same plex behavior of our simple system for modest values.of
method we use in Sec. Il C. This expansion can be easily

calculated up to second order, as well as inverted into the

time domain. The resulting expression =1 is 2. Memory kernel expansion
Co(t)~(1— J2/2)exd — t]+ 232t exq —t] The memory ker'nel expar}siclrll approach hgs also been
used to study the dipolar latti¢&! This expansion starts
+4J3%t? exd —t]+J%/2 exd — 5t]. (C2)  from the Zwanzig—Mori projection formalism,
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