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The reorientational relaxation of molecular systems is important in many phenomenon and
applications. In this paper, we explore the reorientational relaxation of a model Brownian rotor
lattice system with short range interactions in both the high and low temperature regimes. In this
study, we use a basis set expansion to capture collective motions of the system. The single particle
basis set is used in the high temperature regime, while the spin wave basis is used in the low
temperature regime. The equations of motion derived in this approach are analogous to the
generalized Langevin equation, but the equations render flexibility by allowing nonequilibrium
initial conditions. This calculation shows that the choice of projection operators in the generalized
Langevin equation~GLE! approach corresponds to defining a specific inner-product space, and this
inner-product space should be chosen to reveal the important physics of the problem. The basis set
approach corresponds to an inner-product and projection operator that maintain the orthogonality of
the spherical harmonics and provide a convenient platform for analyzing GLE expansions. The
results compare favorably with numerical simulations, and the formalism is easily extended to more
complex systems. ©2004 American Institute of Physics.@DOI: 10.1063/1.1649735#

I. INTRODUCTION

Reorientational relaxation of molecular systems is im-
portant in understanding many processes, including dielectric
relaxation, solvation dynamics, electron transfer, and critical
behavior in liquid crystals.1–5 Reorientational relaxation has
been used as a probe of polymer melts near the glass transi-
tion because the rotational motion explores the heterogeneity
of local dynamics on long time scales. Studies of rotational
motion at the single molecule level demonstrate heteroge-
neous nonexponential relaxation and possible domain
switching in these glassy systems.6,7 Since fragile glass
forming liquids have fairly isotropic interactions, the behav-
ior of the reorientational relaxation in these systems com-
pared with strong liquids may be significantly different, and
the differences may be responsible for some of the properties
of the glass phase.8 Dipolar reorientational relaxation of sol-
vents is also important in understanding the structure and
function of proteins, proton transfer, solvation of ions, and
many other phenomenon that are important to biological
processes.9–16 The reorientational relaxation is also impor-
tant in interpreting spectroscopy of these complex systems
with optical measurements that probe the orientations of
transition dipoles.17

These applications motivate us to study the reorienta-
tional relaxation of a model lattice system, where the mol-
ecules are free rotors fixed on a perfectly ordered
lattice.1,2,10–12,14–16,18–22Time scale separation justifies ne-
glecting translational motion because the reorientational mo-
tion is often much faster. Even more simplistic models with
limited orientations successfully explained observations of
electron transfer reactions and solvation dynamics.4,23 The

molecules interact with each other through a bilinear tensor
interaction,m iT i j m j , where i and j denote positions on the
lattice andm i is the orientation of the molecule at that posi-
tion. Usually, the interaction tensorT i j is only a function of
the distance between two molecules, and their orientation
with respect to the relative position vector. The model allows
simple incorporation of an external potential that linearly
couples to the orientation of the rotors with a position depen-
dence, but this paper omits this addition for simplicity. Under
these interactions, the system undergoes rotational Brownian
motion,
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The orientation of moleculei 5$ i x ,i y ,i z% is specified by a
set of anglesV i . The Green’s function isG with a free
diffusion constant,D0 , and inverse temperature,b. The po-
tentialbV is ( i , jm iT i , jm j , and¹V i

is the rotational diffusion
operator.

Simulations using similar lattice solvents characterize
the solvation dynamics and thermodynamics of complex
systems.13,24,25 These simulations are more realistic than a
dielectric continuum, but not as computationally expensive
as molecular dynamics simulations with explicit solvent. To
make a comparison between real systems and simulations
with lattice solvents, one must explore the properties of the
lattice solvent and compare them with more realistic simula-
tions and experiments. Simulations by Papazyan and Maron-
celli and by Zhou and Bagchi demonstrated that the model of
a Brownian dipolar lattice shows many of the properties of
more realistic dipolar liquid systems, such as water, includ-a!Electronic mail: jianshu@mit.edu
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ing non-Debye relaxation that fits the Davidson–Cole dielec-
tric response function, which is often used in the analysis of
data from real dipolar systems.10–12

The Brownian dipolar lattice has an extensive history.
The thermodynamics of this system was studied by Rosen-
berg and Lax with a high temperature expansion.19–21 Erzan
and Stell used a variational theory to approximate the low
temperature behavior of a similar dipolar lattice system, and
Høye and Stell used the linear hypervertex approximation to
find the ferroelectic phase transition for off-lattice dipolar
hard sphere systems, which have been extensively studied by
many authors, including Nienhuis and Deutch.26–28 Using a
similar approach, Zwanzig studied the dielectric relaxation
of this system.1,2 Titulaer and Deutch also investigated this
system with high temperature expansions to develop a rela-
tionship between dielectric relaxation and time correlation
functions.22,29 More recently, Loring and Mukamel used the
dipolar lattice to describe the solvation of ions, which
Papazyan and Maroncelli studied with a Brownian dynamics
simulation.12,14 Berne, and later Bagchi, Chandra, and Rice
applied a time-dependent density functional theory to study a
similar system.15,16,30Their work elucidated the role of inter-
actions as well as translational and rotational diffusion on
deviations from Debye relaxation. Several other simulations
on this system reveal the role of phase transitions in the
dielectric response and quantify non-Debye relaxation.31,32

As discussed in Appendix C, the high temperature,T,
expansion for the dipolar lattice starts from the simple iso-
tropic solution of the high temperature phase and systemati-
cally incorporates corrections of orderT2n1. These solutions
are asymptotic to the high temperature solution and may not
extrapolate well into finite temperatures. To correct this dif-
ficulty, several authors used projection operator techniques to
derive a memory kernel that contains the contributions from
interactions between rotors.10,11,33We refer to this approach
as the standard generalized Langevin equation~GLE! ap-
proach because the equations have the same form as those
derived from the Liouville equation, except there is no ran-
dom force and the frequency term is replaced by a decay
term. Evaluation of the memory kernel resulting from the
GLE approach requires a leading order perturbation expan-
sion, which can also possess some difficulties with extrapo-
lation to finite temperatures. As a result, the agreement be-
tween the simulation and the perturbation expansion for the
dipoles on a lattice breaks down for moderate dipolar inter-
actions, especially in the long time regime.10,11 The
asymptotic nature of these perturbation expansions implies
that additional terms in the perturbation series will not nec-
essarily improve the agreement.

The difficulty with traditional perturbation solutions mo-
tivates us to explore a basis set approach to Brownian dy-
namics of interacting rigid rotors on a lattice. In a companion
paper, we use a similar approach to study the facilitated ki-
netic Ising model.34 In analogy to the use of a basis set in
quantum mechanics, we introduce a complete basis set and
attempt to diagonalize the diffusion operator within a sub-
space of the basis set. The basis set gives stability to the
equations by partially renormalizing the perturbation expan-
sion, which makes convergence to the finite temperature so-

lution more probable. This renormalization comes from cap-
turing the contributions from collective motions within the
truncated basis set. The other perturbation methods incorpo-
rate these additional interactions by considering two particle
correlations, then three particle correlations, and the se-
quence continues and results in a failure to capture collective
motions at finite order.

The truncated basis set expansion method evaluates the
eigenfrequency and memory kernel of the generalized
Langevin equation~GLE! by directly incorporating the col-
lective motions of the particles in the system. Unlike the
traditional projection operator techniques, the equilibrium
distribution contributes to the initial conditions only and are
not part of the definition of the memory functions. As will be
discussed in Sec. VI, the difference comes from defining a
different projection operator, which does not depend on equi-
librium so that this approach can be used in systems that are
far from equilibrium. The standard GLE approaches with a
perturbation expansion to a finite order more closely re-
semble self-consistent mean field theories, where the par-
ticles move in a time dependent potential created by the
equilibrium many-body mean field effects. The mean field
can give good agreement for short times, but it may fail for
longer time scales, where collective motions become impor-
tant.

This paper shows that the projection operator techniques
are much more versatile than one expects from examining
the standard GLE approaches. Standard GLE uses a specific
basis set and inner product. As discussed in Appendix A, the
equations for GLE may not directly write out the higher
order basis functions, but one can easily use basis set com-
pleteness to show that standard GLE approaches assume a
specific basis set and inner-product. The dynamics do not
depend on the specific form of the basis set or inner-product,
which determine the projection operators. As with all inner-
product spaces, the inner-product and the basis set define the
space. If two spaces describe the same physical system, the
operators in one space must translate into operators in the
other space. However, one can never evaluate the equations
exactly and the chosen basis set and inner-product influences
the accuracy of the approximations.

The choice of the inner-product space~basis set and
inner-product! can help reveal certain physics. The standard
GLE approach chooses the inner-product as the integral be-
tween two elements with a weighting by the equilibrium dis-
tribution. For the lattice rotor problems discussed below, one
generally cares about orientational correlations functions.
The natural basis set for measuring these quantities is the
product of spherical harmonics for each rotor in the lattice
~see Sec. II!. The inner-product with the weighting by the
equilibrium distribution destroys the orthogonality of this ba-
sis set. In principle one can use Gram–Schmidt procedures
to restore orthogonality, but the new inner-product space has
a complicated inner-product, which results in complicated
projection operators in terms of the quantities that we want
to evaluate—the correlations between various spherical har-
monics.

If the inner-product does not include the equilibrium dis-
tribution, the orthogonality of the spherical harmonics is
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maintained for all interactions and temperatures. Orthogonal
transformations to other observables are not complicated by
the equilibrium distribution. An example in Sec. III A shows
that we can easily determine both the vector dependent re-
laxation and the single rotor relaxation by simple transforms.
This vector dependent relaxation can give insight into vari-
ous collective processes including the validity of ‘‘Onsager’s
inverted snowball effect.’’35 We can also prepare the system
in a nonequilibrium initial condition—applying a strong
electric field for negative time and then turning the field off
at t50 is an example—and watch the system relax. Standard
GLE approaches restrict themselves to fluctuations around
equilibrium. The equilibrium independent inner-product
space may not be the best choice for all applications, but one
should consider the possibility of using inner-products other
than those used in standard GLE approaches. In the end, the
inner-product, and therefore the projection operator, should
be determined by the physics that one wants to reveal.

As a proof of principle, we use the equilibrium indepen-
dent inner-product to study a simpler system than the dipolar
lattice since numerical simulations are easier and the equa-
tions are simpler to interpret. The equilibrium independent
inner-product allows us to easily explore the vector depen-
dence of the relaxation and explore the role of coupling be-
tween different basis elements in the relaxation of the sys-
tem. The coupling to different basis elements correspond to
different relaxation mechanisms, and can give better physical
insight into the behavior of the system. Applications to more
complicated systems will be addressed in future work. We
restrict ourselves to a two dimensional lattice with the mo-
lecular orientations also in the plane so that each molecule is
described by a single angle,u i . The interactions are nearest
neighbors~NN! with a directional dependence that resembles
the dipolar interaction in two dimensions,

bV5 (
i , j 5NN

2J~m i•~ i 2 j !!~m j•~ i 2 j !!1Jm i•m j

5(
i

2J•cos~u i1u i 1~1
0!!22J•cos~u i1u i 1~0

1!!. ~2!

This interaction is chosen because the tensorsT i j have many
properties that appear in the dipolar tensor, including( jT i j

50. Zwanzig performed a direct perturbation expansion of
the dipolar tensor and many of his expressions do not depend
on the exact form ofT i j so we can directly compare our basis
set approach with Zwanzig’s perturbation expansion.1,2

These properties also simplify evaluation of these expres-
sions, since it makes cancellations among different terms
more apparent.

Redefining the angles that correspond to them i ’s maps
this problem into the classicalxy plane rotor model with the
exotic Kosterlitz–Thouless phase transition@(u2i→u2i),
(u2i 1(

0
1)→2u2i 1(

0
1)), (u2i 1(

1
0)→p2u2i 1(

1
0)), and (u2i 1(

1
1)

→u2i 1(
1
1)2p)].36–38 Although we are mainly concerned

with the high temperature basis set expansion, we address
some of the issues associated with a spin-wave basis set in
the low temperature regime in Sec. V. Similar to the results
for the dipolar lattice, the short time behavior displays a

many-body effect on the motions of a single dipole, but
longer time behavior depends on collective motions.10,11,15

Unlike the dipolar system, our system cannot be frustrated so
the single rotor correlation function is not slower than the
many-body correlations. We show that the harmonic modes
of spin-waves capture both the short and the longer time
scale behavior with deviations in the intermediate time re-
gime. The success of spin waves in the low temperature re-
gime and the single particle basis set in the high temperature
regime is similar to local clustering modes versus hydrody-
namic modes discussed in applications of mode coupling
theory.33,39

The rest of the paper is organized as follows: Section II
introduces the basis set formalism in a general context for
lattice rotor models. In Sec. III we demonstrate application
of this formalism to the specific model discussed above. Sec-
tion IV presents a numerical comparison between the direct
perturbation expansion, a memory kernel expansion, and the
truncated basis set. For completeness, we discuss the low
temperature spin-wave approximation in Sec. V and con-
clude in Sec. VI.

II. CORRELATION FUNCTIONS AND THE BASIS SET

In this section we will introduce the application of the
truncated basis set method to a three-dimensional lattice with
arbitrary bilinear interactions. The discussion is general, but
we apply these methods to a simpler two-dimensional system
in Sec. III because we can perform accurate simulations of
this system. The important measured quantities are the cor-
relation functions of the orientations of the rigid rotors. In
this paper, we calculate the autocorrelation function of a
single rotor. This correlation function is important in under-
standing the dielectric properties of neat solvents and in in-
terpreting two-dimensional spectroscopy of a solute in a di-
lute solvent, such as HDO in D2O. Choosing the direction
that we measure the rotor’s orientation as thez axis, the
autocorrelation function can be written as

m i
z~ t !m i

z~0!5cos~u i~ t !!cos~u i~0!!

5
4p

3
Y1,0~V i~ t !!Y1,0~V i~0!!, ~3!

where the overbar denotes expectation,m i
z(t) is the z com-

ponent of the rotor’s orientation vector,u i(t) is the corre-
sponding angle in polar coordinates, andY1,0 is the spherical
harmonic,Y1,05A3/(4p) cos(u). In fact, all important ob-
servable can be expressed in terms of correlations between
elements of the orthogonal basis set,

x~$ l i ,mi ,V i~ t !%!5)
i

Yl i ,mi
~V i~ t !!. ~4!

For the single-particle autocorrelation function, all rotors are
in the Y0,051/A4p state except for rotori. The correlation
between two basis elements,x($ l i ,mi ,V i(t)%) and
x($ l i8 ,mi8 ,V i(t8)%) can be formally written as
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E )
i

dV i

4p
x†~$ l i ,mi ,V i%!

3exp@D~ t2t8!#x~$ l i8 ,mi8 ,V i%!req~$V i%!, ~5!

where D is the diffusion operator defined by the Green’s
function andreq($V i%) is the equilibrium distribution. If we
have time translational invariance, we can sett850. The
diffusion operator is not Hermitian and must be applied to
the right. By defining an inner-product, ^AuB&
5*(dV j /(4p))A†B, and using bra-ket notation, we rewrite
the equation in terms of the adjoint operator,D†,

^x~$ l i ,mi ,V i%!uexp@Dt#x~$ l i8 ,mi8 ,V i%!req~$V i%!&

5^exp@D†t#x~$ l i ,mi ,V i%!ux~$ l i8 ,mi8 ,V i%!req~$V i%!&

~6!

with

D†5D0(
i

@¹V i

2 2@¹V i
bV~$V i%!#¹V i

#. ~7!

The equilibrium and dynamic parts can be separated by using
basis set completeness, I5(ux($ l i ,mi ,V i%)&
3^x($ l i ,mi ,V i%)u, which results in the expression

^exp@D†t#x~$ l i ,mi ,V i%!ux~$ l i8 ,mi8 ,V i%!req~$V i%!&

5 (
l i9 ,mi9

^exp@D†t#x~$ l i ,mi ,V i%!ux~$ l i9 ,mi9 ,V i%!&

3^x~$ l i9 ,mi9 ,V i%!ureq~$V i%!ux~$ l i8 ,mi8 ,V i%!&. ~8!

In this expression,req($V i%) can be considered a self-adjoint
operator. The equilibrium contribution is the initial condi-
tions for the propagation of the equation and can be replaced
by nonequilibrium initial conditions. The high temperature
limit, b50, corresponds to free diffusion with a diagonal
correlation function,

^exp@2D†t#x~$ l i ,mi ,V i%!ux~$ l i8 ,mi8 ,V i%!req~$V i%!&

5)
i

d l i ,l
i8
dmi ,m

i8
exp@2l~$ l i ,mi%!t#, ~9!

wherel($ l i ,mi%)5D0( i l i
2. Since each dipole is acting in-

dependently in this high temperature limit, the decay of the
dipolar orientation, ^cos(ui(t))cos(ui(0)&, will decay as a
single exponential which is consistent with normal Debye
behavior. Adding interactions will naturally cause deviations
from this behavior.

As in quantum mechanics, if the angular dependence of
the potential comes from a bilinear form, we can express the
potential as the product betweenY1,m(V i) and Y1,m(V j )
spherical harmonics. The potential couples basis set elements
whose angular momentum quantum numbers,l i , differ by
one on two rotors or by two on a single rotor. This scenario
is similar to the spirit of mode coupling with the hierarchical
coupling structure. For a weak potential, the fast decay of the
diffusion term exp@2l($li ,mi%)# dominates the modes with
large l($ l i ,mi%) values and the potential term can be ne-

glected. These observations give a natural scheme for per-
forming a basis set expansion for high temperatures. We
truncate the summation in Eq.~8! at the point where the
diagonal free diffusion term dominates the coupling between
basis set elements. Then we approximately diagonalize this
truncated basis set with respect to the diffusion operator and
solve for the equation of motion.

The simplest interpretation of this approach is a matrix
propagation scheme with the matrix elements ofM deter-
mined by ^D†x($ l i ,mi ,V i%)ux($ l i8 ,mi8 ,V i)& and initial
conditions determined by ^x($ l i8 ,mi8 ,V i%)ureq($V i%)u
x($ l i9 ,mi9 ,V i)&. As demonstrated in the next section, diago-
nalization of even the simple two dimensional requires some
approximations, but excellent agreement with simulation at
fairly strong interactions requires only a few basis elements.
The truncated basis set approach outlined above applies to
many different systems. The only requirements are a com-
plete basis set and local coupling between elements of the
basis set. If this is not the case for the chosen basis set, a
different basis set should be explored. As an example, in Sec.
V we use the collective spin wave basis set to capture the
long time low temperature behavior of a single rotor. These
results demonstrate the importance of choosing a proper ba-
sis set.

The basis set approach can also be interpreted as a pro-
jection operator technique with projection operators defined
by ( i ux i&^x i u, where the sum is over the elements that span
the range of the projection. This simple result is discussed in
Appendix A. Appendix A also shows the equivalence of the
standard GLE approach to this projection operator. This re-
sult is expected since most of the results of the projection
operator approaches do not depend on the specific form of
the projection operator.

III. SINGLE ROTOR CORRELATIONS IN THE
TWO-DIMENSIONAL SHORT RANGE MODEL

To maintain consistency between the two-dimensional
model and the general framework outlined in the preceding
section, we define our single particle basis set for the two-
dimensional model with the sine and cosine functions. In
three dimensions, the cosine function corresponds to theYl ,0

spherical harmonic. The choice of these trigonometric func-
tions makes it easier to visualize. To simplify notation, we
define mW l i

1 5cos(l•ui) and mW l i
2 5sin(l•ui), and denote the set

$mW l i
1 ,mW l i

2 % asmW l i , andmW 1i asmW i . With these definitions, the
potential is

bV5J(
i , j

mW i•T i , j•mW j ~10!

with

T i , j5S 1 0

0 21D ~d j ,i 6~0
1!2d j ,i 6~1

0!!. ~11!

The Kronecker delta ensures nearest-neighbor interactions
with the proper directional dependence. From our definitions
of mW l i , we build an orthogonal basis set, which can be
blocked into several groups,

5698 J. Chem. Phys., Vol. 120, No. 12, 22 March 2004 Witkoskie, Wu, and Cao

Downloaded 16 Mar 2004 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



A051,

~A1! i
a5A2uW i

a ,

~A2
1! i j

ab52mW i
amW j

b ~ j . i !, ~A2
2! i

a5A2mW 2i
a , ~12!

~A3
1! i jk

abg523/2mW i
amW j

bmW k
g ~k. j . i !,

~A3
2! i j

ab52mW 2i
a mW j

b ~ j Þ i !, ~A3
3! i

a5A2mW 3i
a ,

... .

This basis set is orthonormal with respect to the inner-
product^AuB&5*P i(du i /(2p))A†B, which is not the ther-
mal equilibrium average used in most GLE formalisms.
Throughout this paper italic characters, such asi, j, and k
refer to a lattice position,x andy, and the greek characters,
such asa, b, g refer to the two vector components, sin or
cos, so that mW

l i 5(0
0)

a51
5cos(l•u(

0
0)) and mW

l i 5(0
0)

a52
5sin(l•u(

0
0)),

wherel 51, 2, 3 in the basis set defined above and we drop
the 1 for thel 51 term. The order of the italic characters
corresponds to the order of the greek characters~first posi-
tion of the italic characters corresponds to first position of
the greek characters, etc.!. Although higher order basis func-
tions can be included, we truncate the basis set at third order.
From this basis set we are able to evaluate Eq.~8!. The A2

basis functions do not couple to any of the odd modes, unless
we apply an external potential, and will be neglected. TheA3

3

basis functions do not couple to theA1 basis set and will also
be neglected. These approximations leave us with three types
of basis functions, which we will label asA1→a1 , A3

1

→a2 , A3
2→a3 . In the diffusion equation, Eq.~1!, we rede-

fine time to make thermal diffusion unity so that the adjoint
diffusion operator becomes

D†5(
i

F2]u i

2 2S 2J(
j Þ i

uW j8•T i , j•uW i D ]u iG , ~13!

where (uW j8)
a5]u j

uW j
a5$2sin(ui),cos(ui)%. With these redefi-

nitions, the adjoint operator acting on thea1 basis functions
gives

D1~a1! i
a52~a1! i

a2A2JT i j
ajuW j

j1A2J~B2! i
ajT i j

jnuW j
n .

~14!

Summation is implied for all repeated indices and we intro-
duce a matrix operator to simplify notation,

~Bm! i5Fcos~mu i ! sin~mu i !

sin~mu i ! 2cos~mu i !
G . ~15!

It is important to note that the first number in (Bm) i does not
refer to an index. The product of (Bm) iuW i is a vector formed
from a sum of products of$cos(mui),sin(mui)% and can be
decomposed into several elements of our basis set and should
not be regarded as a single term.

A. A simple first order ansatz

The simplest approximation ignores the coupling to ba-
sis functions outside of the (a1) class and the equilibrium
contribution since these effects are small for smallJ. The

lowest order truncation allows us to exactly diagonalize the
diffusion operator within the basis set by defining Fourier
modes,

~ ã1!k
a5

1

N (
i

exp~2Ik• i !~a1! i
a ,

whereN is the length of the lattice,I is the imaginary num-
ber, andi refers the lattice position. The Green’s function
becomes

(
k,a

u~ ã1!k
a&e2lkt^~ ã1!k

au, ~16!

where u¯& and ^¯u represent the bra-ket structure and the
eigenvalues, lk , have a simple form, lk52@1
12J(cos(kx)2cos(ky))#. This expression shows a complexk
vector dependence of the relaxation. The smallk vector re-
laxation is similar to the relaxation predicted for free diffu-
sion because the interaction is short ranged. For largerk
vectors, the effects of the lattice structure on the relaxation
become apparent. The relaxation in thex direction is faster
than free diffusion while the relaxation in they direction is
slower. The favorable interaction for the cos(ui)cos(ui6(

0
1)) re-

sults in faster relaxation for thex direction and the unfavor-
able interaction for cos(ui)cos(ui6(

1
0)) results in the slower

relaxation in they direction. In the large lattice limit,N
→`, the single rotor orientation correlation function be-
comes

^cos~u i~ t !!ucos~u i~0!!&

5
1

2 E dkx

2p

dky

2p
exp@2t22Jt cos~kx!

12Jt cos~ky!#

5e2tI 0
2~2Jt!, ~17!

where I 0 is the zeroth order Bessell function, and time is
scaled so thatD051. The first order calculation is easily
generalized to any bilinear potential with a well-defined dis-
crete Fourier transform, by replacing the cos(kx,y) terms with
the appropriate transfer matrix, which may mix the sin(ui)
and cos(ui) basis sets. The result also extends to the three-
dimensional case with the appropriate transfer matrix. As
mentioned above,J is scaled byb/2 and time is scaled so
that D051.

In the long time limit, the orientation correlation func-
tion decays with an effective diffusion constant,Deff51
24J. This result is reminiscent of the effective diffusion con-
stant on rough energy surfaces derived by Zwanzig.40 For
weak interactions, there is no collective motions. Each rotor
moves independently and the interactions simply impede the
motion of the rotor, which slows down the overall rate of
diffusion. The Bessell function comes from the integration
over cos(kx) and cos(ky), which is similar to Zwanzig’s pre-
scription for calculating the effective diffusion constant,
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Deff5D0•F E du

2p
exp~2bV~u!!GF E du

2p
exp~1bV~u!!G ,

~18!

with D0 being the free diffusion constant.
Within the first order calculation, the relaxation of anyk

vector is given by exponential Debye behavior, but the relax-
ation of a single rotor, which is a sum ofk vectors is non-
Debye. The Debye behavior for first order comes from the
simple Fourier diagonalization scheme that results in simple
first order harmonic expressions for the relaxation of each
mode. As the temperature is lowered,J increases, higher or-
der effects explored below cause the spectrum of relaxation
times to deviate from a monoexponential resulting in non-
Debye behavior for the relaxation of a single dipole and each
k vector component. These first order result are consistent
with the finding of Berne that short range interactions do not
lead to non-Debye behavior on long length scales, smallk,
but as will be shown below, more accurate calculations by
incorporating higher order effects lead to non-Debye relax-
ation even for systems with nearest neighbor interactions.30

The first order result appears to be crude and the solution
diverges atJ50.25, but the agreement with simulation is
good for J,0.20. Figure 1 shows the good agreement, and
Sec. IV discusses the reasons for the success of this simple
first order ansatz. By inverting the diffusion operator and
finding the eigenfunctions, even at this level of approxima-
tion, partially renormalizes the quantities, which improves
the agreement by capturing the collective behaviors of the
system. In the next section we elaborate on incorporating
additional basis functions into our expansion, which allows
us to achieve an exceptional fit to the simulation forJ
50.30 and have a reasonable fit forJ50.35.

B. Higher order approximations
to the Green’s function

At the simplest level of approximation presented above,
the basis set was easily diagonalized. For a more compli-
cated higher order approximation, this is not necessarily the
case, but we can still include effects from higher order basis
set elements and achieve better agreement with simulation.
To achieve this goal we determine the coupling between the
basis elements presented in Eq.~12!. The procedure produces
an equation of the form,] tAW (t)5MTAW (t), whereAW (t) de-
notes the coefficients associated with these basis set ele-
ments, and the elements of the basis are denoted by omitting
the time parametert, andMT is a matrix determined by the
diffusion operator,Mi j 5^AW i uD†AW j&. The time parameter is
omitted since we are referring to the basis functions. Note
that the matrix is transposed since we are using the adjoint
operator and the basis functions are real. The matrixM can
be subdivided into submatricesMi j that correspond to the
overlap of elements of theai and aj subsets of the basis
functions,

M5S M11 M12 M13

M21 M22 M23

M31 M32 M33

D . ~19!

It is difficult to find the eigenvectors of this matrix, even
numerically. Approximately inverting the matrix is simpler
so we take the Laplace transform of the equation,t→z, and
the propagator becomes@ Iz1MT#21, with the identity op-
erator I , and Laplace variablez. From an arbitrary initial
condition,ai(t50), the value of thea1(t) basis functions at
a future time is given by the inverse Laplace transform of

a1~z!5@ Iz1MT#11
21a1~ t50!1@ Iz1MT#12

21a2~ t50!

1@ Iz1MT#13
21a3~ t50!, ~20!

wherea1(z) refers to the Laplace transform of the value of
the coefficient associated with thea1 basis set andai(t50)
is the initial condition for these coefficients. We cannot ex-
actly invert the matrix@ Iz1MT# so we must introduce some
approximations. Our first order result corresponds approxi-
mating the off diagonal blocks in the first row of@ Iz
1MT# as zero so that the values of thea1 basis set are
independent of the higher order basis set elements. Higher
order approximations require more accurate forms for these
matrix elements. The exact forms of the matrix elements of
Mi j are presented in Appendix B. We can formally rewrite
the i1 blocks of the inverse of the matrix@ Iz1M# as

~ Iz1M!11
215~ Iz1M118 !21,

~ Iz1M!21
215~ Iz1M22!

21M23~ Iz1M33!
21

3M31~ Iz1M118 !21, ~21!

~ Iz1M!31
2152~ Iz1M33!

21M31~ Iz1M118 !21,

where

FIG. 1. ^cos@ui(t)#cos@ui(0)#& autocorrelation function forJ50.20. Note that
the highT direct perturbation result fails to fit the simulation even for this
weak interaction, but the first order basis set has good agreement. The
memory kernel result is not shown since it would be superimposed on the
second order basis set result.
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M118 5M112M13~ Iz1M33!
21M31

1M12~ Iz1M22!
21M23~ Iz1M33!

21M31.

~22!

This result follows from solving the block matrix equations:

S B11 B12 B13

B21 B22 B23

B31 B32 B33

D S A11 A12 A13

A21 A22 A23

A31 A32 A33

D
5S I11 012 013

021 I22 023

031 032 I33

D , ~23!

for each elementBi j , whereI i i is an identity matrix for the
sub-block and0i j is a matrix of zeros. The simplified form
follows from the elements of theM32 being identically zero.

It is important to note that we have calculated these
quantities for the adjoint operator so the contributions to the
propagation of the elements of the (a1) basis set comes from
the (Iz1M) i1

21 terms instead of the (Iz1M)1i
21 matrices

that result from using the original diffusion operator. We only
need to calculate these block matrices to determine the single
spin autocorrelation function, but other matrices may be nec-
essary to calculate higher order correlation functions. These
equations are reminiscent of the results derived from the
standard projection operator techniques, where the higher or-
der effects of the dynamics become a nonexponential
memory kernel. Up to this point the calculation is formally
exact except for the truncation of the basis set to the ele-
ments ofa1 , a2 , anda3 . For small values ofJ, the terms
resulting from the diffusion operatorD0¹V i

2 dominate the

higher order basis functions,a2 anda3 , and we can assume
that they are approximately diagonal,M225(z13)I22, and
M335(z15)I33. It is important to note that these assump-
tions do not capture all of the second order contributions, but
the omitted second order contributions result in an expres-
sion that changes signs and give a partial cancellation—a
random phase approximation. Under these assumptions, we
evaluate the matrix elements of (Iz1M) l1

21. The form of the
11 block greatly simplifies

~@ Iz1M118 # ! i j
ab'S z111

12J2

z15D dabd i j

1JS 12
12J2

~z13!~z15! D ~T! i , j
ab . ~24!

The Fourier transform introduced in Sec. III A also diagonal-
izes this matrix so the inverse can be calculated analytically
although the inverse Laplace transform requires numerical
calculation based on this analytic expression. It is important
to note that this calculation, without considering other terms,
already shows deviations from Debye behavior for everyk
vector even for this locally interacting model. This result is
very different from the mean field calculations of Berne,
which predicted that only long range interactions caused de-
viations from Debye theory in the smallk limit.30 The effects
of translational motion on the relaxation was studied by Bag-

chi and Chandra and has been demonstrated to reduce if not
eliminate non-Debye behavior in dipolar systems.16 Berne’s
calculation also had translational motion although he did not
analyze the interplay between translation and diffusion. The
role of translation on non-Debye behavior in systems with
short range interactions requires further investigation, but we
expect that translation will have an even stronger effect on
the non-Debye behavior of short range models.16

The other two blocks are easily expressed as products of
the inverse of the 11 block expression in Eq.~24! with the
coupling matrices,

@ Iz1M#21
21'

1

~z13!~z15!
M23M31@ Iz1M8#11

21,

~25!

@ Iz1M#31
21'

1

~z15!
M31@ Iz1M8#21.

The indexes are omitted, but follow the notation above. It is
important to note that the inner product is over both the
spinor variables~a,b! and the positions,~i, j, etc.!, but the
A2 cos(ui) basis function and theA2 sin(ui) do not mix at any
order of the expansion because symmetry prevents a prefer-
ence for any directions. This result is related to the failure to
form long range order for isotropic interactions in two-
dimensions. The expressions in Eq.~24! and Eq.~25! are the
approximate second order description of the dynamics that
are needed to calculate the autocorrelation function for a
single rotor,^cos(ui(t))cos(ui(0))&. Because we neglect near-
est neighbor interactions for the higher order basis functions,
the Fourier modes in Sec. III A diagonalize this matrix. They
need to be supplemented with the initial conditions, which
are determined by the equilibrium distribution.

C. Equilibrium contribution

Although the basis set approach does not require the
equilibrium initial condition, we will use the equilibrium so
that we can compare our results to the standard GLE ap-
proach. The initial conditions are the result of evaluating the
Boltzmann distribution,

^x~$ l i9 ,mi9 ,V i%!ureq~$V i%!ux~$ l i ,mi ,V i%!&. ~26!

The equilibrium distribution can be determined by finding
the eigenfunction with zero eigenvalue, but as mentioned
above, determination of the eigenfunctions and eigenvalues
is difficult for a ~infinitely! large matrix. Instead, we evaluate
the equilibrium distribution perturbatively. The method fol-
lows the derivation of Rosenberg and Lax.2,10,11,19We per-
form a Taylor expansion of the canonical partition function
and evaluate Eq.~26! term by term,

req5h exp@2bV#5h~ I 2bV1 1
2~bV!22 1

6~bV!31¯ !,
~27!

where h is the normalization constant. Due to rotational
symmetry and lack of long range order, the correlation of
^req($u i%)cos(ui(0))2&51/2 for all interaction strengths, so
we impose the normalization at the end of the calculation.
The equilibrium contribution is calculated for terms that con-
tribute up to second order inJ. For interactions between
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elements of thea1 subset, the contributions come from the
nearest neighbors and the next nearest neighbors,

^~a1! i
areq~a1! i

a&51,

K ~a1! i
areq~a1!

i 6 S10D
a L52J1

J3

2
,

K ~a1! i
areq~a1!

i 6 S01D
a L5J2

J3

2
,

~28!K ~a1! i
areq~a1!

i 62S10D
a L5J2,

K ~a1! i
areq~a1!

i 62S01D
a L5J2,

K ~a1! i
areq~a1!

i 6 S01D6~7 ! S10D
a L522J2.

The normalization for the autocorrelation functions is one
because the basis functions are properly normalized, al-
though* du i /(2p)cos(ui)

251/2. We only need the equilib-
rium contribution to first order for the higher modes since
their dynamics contribution is first order inJ. These contri-
butions are easily related to the dynamical parts calculated in
Appendix B,

^a1reqa3&52 1
2M12,

~29!
^a1reqa3&52 1

3M13,

whereM1i are the matrices defined in Sec. III B and Appen-
dix B.

Combining the dynamic and equilibrium parts gives the
final expression for the Laplace transform of the single par-
ticle correlation function,

K reqa1,i

1

z2D1
a1,i L 5@ Iz1M118 # i ,i

2124JS 12
J2

2 D @ Iz1M118 #
i 1 S10D ,i
21

14J2@ Iz1M118 #
i 12S10D ,i
21

28J2@ Iz1M118 # i 1 S11D ,i

1
24J3

~z13!~z15!
@ Iz1M118 #

i 1 S10D ,i
21

2
4J2

~z15!
@ Iz1M118 # i ,i

21. ~30!

In this expression, terms have been combined since elements
of the matrix, such asMi ,i 6(

0
1) , are related to other elements

of the matrix, such asMi ,i 6(
1
0) . The expression above can be

evaluated to determine the single particle correlation func-
tion. As discussed previously, the Fourier modes diagonalize
the matrix@ Iz1M118 # so the inverse can be done exactly, but
the Laplace transform must be done numerically. These re-
sults are compared against a simulation and previous ap-
proaches to lattice dynamics in Sec. IV.

IV. COMPARISON WITH SIMULATION
AND OTHER METHODS

We choose this simplified lattice system to allow com-
parison with very accurate Brownian dynamics simulations.
The simulated system is a square lattice of rotors with peri-
odic boundary conditions. For a given coupling strength,J,
the length of each side of the lattice is increased by 4, until
there is an agreement for three different lattice sizes. A lattice
size of 40 is found to be sufficient for simulations withJ
,0.5. This range of interaction strengths is below the
Kosterlitz–Thouless phase transition temperature,J,0.55,
that has been examined extensively elsewhere, so finite size
effects should be minimal.36–38,41–43Similarly, the time steps
are adjusted by factors of 22n until there is an agreement
between three consecutive time steps. Under the Brownian
dynamics the system is allowed to equilibrate with a time
determined by achieving agreement in the equilibrium corre-
lation function of the lattice with random initial orientations
and orientations in a single direction. The equilibration is
also verified by performing Monte Carlo simulations to de-

termine the equilibrium correlations and comparing them
with the Brownian dynamics initial conditions.

The comparison of these simulations against the trun-
cated basis expansion and the perturbation methods outlined
in Appendix C are plotted forJ50.20, 0.25, 0.30, and 0.35
in Figs. 1–4. In Figs. 1 and 2, the memory kernel expansion
is omitted since it is close to our basis set solution. From
these figures it is evident that the basis set approach matches
the long time behavior of the simulation better than the other
methods for all values ofJ. As mentioned in Sec. III A, for
J<0.25 even the simple ansatz is comparable to the other
perturbation approaches. ForJ.0.25 the Bessell function
result predicted by the first order result in Eq.~17!

FIG. 2. ^cos@ui(t)#cos@ui(0)#& autocorrelation function forJ50.25. The first
order result begins to break down, but the agreement between the second
order result and the simulation is excellent. The memory kernel result is not
shown since it would be super-imposed on the second order basis set result.
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outgrows the exponential term and the correlation function
diverges. This prediction implies that the collective motions
of the system are stronger than the dissipation of free diffu-
sion. At this coupling strength, the system finds an additional
mechanism for dissipation through coupling to higher basis
functions. This result indicates that the higher order basis
function become important atJ'0.25.

The second order basis set result incorporates these
higher order contributions in the simplest form, an extra cou-
pling between the first order basis set elements. These addi-
tional terms remove the divergence atJ50.25 and push the
point where the coupling is stronger than the free diffusion to
higher values ofJ. The simplified incorporation of these ex-
tra basis functions assumes that the elements ofM23 and
M32 are zero and the off diagonal elements ofM22 andM33

are also zero. These off diagonal terms result in similar ex-
pressions to the one that diverges in the first order calcula-

tion. Although we do not present a full analysis, these diver-
gences are canceled by coupling to higher order spherical
harmonics,( l i.5.

The cause of the divergence for strong coupling is also
the reason for the success of this basis set expansion. The
divergence results from the basis expansion capturing the
collective behaviors of the rotors. A perturbation expansion
corresponds to only calculating the nearest neighbor interac-
tions, which does not capture the entire collective motions.
As a result, the perturbation expansion is always a multiex-
ponential. The memory kernel expansion also includes inter-
actions among basis functions in a perturbative manner that
will always result in exponential long time relaxation. The
memory kernel expansion captures the short time mean field
dynamics since the equilibrium contribution is incorporated
into the expansion, but it does not directly incorporate col-
lective dynamics. This feature is very evident in Figs. 3 and
4. The memory kernel expansion does a better job than the
basis set expansion at capturing the short time behavior since
the equilibrium distribution is better approximated in this
expansion, but the fit starts to deviate from the simulation
curve for t.6. In contrast, the basis set deviates slightly
from the simulation for intermediate times, but the calcula-
tion starts to fit the simulation data very well for longer
times.

The agreement for short times is the result of the cou-
pling between basis functions being retarded, so that the ini-
tial process corresponds to diffusion in a mean field environ-
ment that is not correlated to the motion of the rotor. Since
we incorporate the equilibrium distribution, the shape of the
potential energy surface att50 is approximately correct re-
sulting in the proper equation of motion. At intermediate
times, the collective motions begin to play a role causing
deviations from the behavior predicted by the basis set cal-
culation. The two contributions to the collective behavior
come from coupling between the first order basis set and
coupling between the higher order basis sets. We treat the
first order basis sets exactly, so that we get the contributions
from their coupling correct. The contributions from higher
order basis sets are treated approximately, but since the free
diffusion term causes these contributions to decay faster than
the contributions from the first order basis set, these higher
order contributions become small at long times and better
agreement at longer times is achieved. The memory kernel
expansion captures the dynamics in the initial time by incor-
porating the correct mean field results, but it does not com-
pletely capture the collective behaviors that are important at
longer times.~See Fig. 5.!

As the interaction strength,J, increases, the collective
motions of the rotors become more important causing a slow
down in the overall relaxation. The slow down of the relax-
ation time is demonstrated in Fig. 6. As can be seen from
Fig. 6, the relaxation time is a strong function ofJ. The
calculated relaxation time is in good agreement with the
simulation, but the calculation systematically underestimates
the relaxation time. The calculation predicts a divergence in
the relaxation time atJ50.38. Considering the predicted KT
phase transition atJ'0.55 discussed below~Sec. V! and the
power-law behavior of the simulation atJ51.0, the diver-

FIG. 3. ^cos@ui(t)#cos@ui(0)#& autocorrelation function forJ50.30. In this
figure, discrepancies between the memory kernel result becomes apparent in
the long time regime.

FIG. 4. ^cos@ui(t)#cos@ui(0)#& autocorrelation function forJ50.35. In the
short time the memory kernel expansion achieves good agreement with the
simulation, but discrepancies between the memory kernel result become
apparent in the long time regime. Conversely, the basis set expansion has
good agreement at extremely short and long times, but deviates slightly for
intermediate times.
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gence is expected for the system although the position of the
divergence is difficult to determine from the simulation. The
strong dependence onJ comes from the increasing impor-
tance of larger clusters of spins. Eventually, all orders of the
single rotor basis functions are necessary to capture the col-
lective motions on long time scales, but the short time still
depends on the motions of individual rotors in a mean field
potential and is captured by this basis set, as long as the
proper zero time correlations are incorporated. Capturing
longer time collective behavior requires the introduction of
another basis, such as the spin-wave basis. In Sec. V, we
discuss the role of spin-wave modes for long time behavior.
We also relate these considerations to similar results found in
Langevin dynamics and mode-coupling theory.

V. LOW TEMPERATURE PHASE

As discussed above, this system can be mapped onto the
plane rotor model that has been extensively studied in the
field of high temperature superconducting physics.36–38If we
apply the mapping outlined in Sec. I@(u2i→u2i), (u2i 1(

0
1)

→2u2i 1(
0
1)), (u2i 1(

0
1)→p2u2i 1(

1
0)), and (u2i 1(

1
1)→u2i 1(

1
1)

2p)], the potential becomes

bV~$u i%!522J(
i

cos~u i2u j !~d i 1~0
1!1d i 1~1

0!!. ~31!

The low temperature phase of this system possesses the ex-
otic Kosterlitz–Thouless phase transition, where the system
fails to achieve long-range order at a finite temperature, but
the distance dependence of the correlation between orienta-
tions of rotor is a power law.36–38,41–43Although discrepan-
cies in simulations exist, the phase transition occurs around
0.85,(bV)21,0.95, whereb is the inverse temperature.
This temperature corresponds toJ'0.55, which is above the
region that our basis set expansion is accurate so we intro-
duce a spin-wave basis set that captures the collective modes
of the system at lowT.

The harmonic basis set expansion is applied toJ51.0.
The simulation is the same as the high temperature simula-
tions, but a slightly larger lattice of 52352 was required, and
some size effects are still present even for this lattice. A
comparison of the simulation and the spin-wave solution is
presented in Fig. 5. At low temperatures, a single rotor
spends most of its time in the bottom of the well formed by
the interactions with its neighbors. Due to the periodic nature
of this potential with only a single minimum, even if the
rotor hops over the barrier, it returns to the well from the
other side. As a result, the movement of a single rotor is not
important for long time behavior. The important motion on
long time scales is the diffusion of the well, which is a col-
lective motion that depends on the movement of the neigh-
bors. We make a harmonic approximation for the well with a
single force constantk. The potential becomes22J cos(ui

2uj)'2const1(1/2)k(u i2u j )
2. Mean field variational ar-

guments determines that the force constant of the harmonic
pseudopotential is given by the expression found in a refer-
ence,k52J exp(21/(4k)).41 For J,0.345Jc , the only so-
lution to this equation isk50. For J>Jc , k initially grows
as (J2Jc)

1/2. For largeJ@0.34,k approaches the value ofJ
as a power law, (k/2J)→12 1

8J
211O(J22). This behavior

is common for mean field solutions.
Standard analysis gives the Green’s function for the mo-

tions of the harmonic modes of the system~spin waves!, uk

5(1/N)( j exp@Ik•j#uj . The ^cos(ui(t))cos(ui(0))& correlation
function becomes a result of simple Gaussian integrals,

^cos~u i~ t !!cos~u i~0!!&

5
1

2
expS 22E

0

D0t

dt8 exp~22dkt8!I 0
d~2kt8! D , ~32!

whered is the dimension of the lattice. Ford52 the integral
in the exponential resembles the first order basis set result.

FIG. 5. The behavior of̂cos@ui(t)#cos@ui(0)#& for J51.0. The low tempera-
ture regime requires collective spin-wave modes. The spin-wave captures
the correct initial decay since the potential is approximately harmonic and
the spin-wave solution agrees with the long time power law. The deviation
in the intermediate time is caused by the potential not being perfectly har-
monic. The simulation has a slight finite size effect that causes some uncer-
tainty in the power-law exponent of the simulation.

FIG. 6. The mean relaxation time of a single rotor as a function ofJ. The
relaxation time is a strong function ofJ because of the increasing impor-
tance of collective motions.
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Since the Bessell function,I 0(t), behaves as (1/A2pt)et

for large values of t, we can approximate

22*0
D0tdt8 I 0

2(2kt8)e22(2k)t8 as const122*D0t0

D0t dt8

3@1/2p(2k)t8#5const2(1/2pk)ln(D0t8). In this expression
t0 is a time where the approximation becomes valid. Since
the log is in the exponential, the resulting expression for the
correlation decay is a power law with a small exponent of
(2pk)21. This power-law decay is expected for a strongly
coupled system, and can be understood through an analogy
with Goldstone modes. As thek vector of the normal modes
goes to zero, the force constant of the modes, i.e., density of
states, also goes to zero and at any time scale there is always
a slow component, which results in the power law. Interest-
ingly, for d>3 the integral is finite and the correlation func-
tion does not decay to zero. Ford51, the long time behavior
of the integral ist1/2 and the system behaves as a stretched
exponential. The stretched exponential occurs naturally in
this calculation and demonstrates the role of the density of
states around zero in determining the long time functional
form. In analogy to thermodynamics, three is the critical di-
mension.

As seen in Fig. 5, similar to the results with the high
temperature basis set, the spin-wave approximation captures
the short time behavior fairly well since the potential is ap-
proximately harmonic. For intermediate times there is a
slight discrepancy between the behaviors of the two systems.
This effect is a result of the potential being not truly har-
monic and allows additional relaxation through defects
which is similar to defect mediated melting in the KT phase
transition.36–38,41–43The simulation and the spin-wave solu-
tion behave as power laws in the long time limit with similar
exponents. The exponent is 0.065 for the spin wave versus
the simulation result, which is approximately 0.072. Al-
though the defect relaxation mechanisms that are not cap-
tured by the spin wave may cause the discrepancies, a finite
size effect causes uncertainty in the simulation exponent so
the spin-wave prediction is well within the error in the mea-
surement of the simulation result for low temperature.

Considering that both the simulation and the spin-wave
calculation behave as similar power laws in the long time
limit, the spin-wave basis set appears to capture the funda-
mental long time relaxation mechanisms of this system. The
deviations occur during intermediate times before the system
enters into the power law. From this point of view, the error
in the calculation appears to be caused by a weighting be-
tween short time components of the relaxation and the long
time power-law components. The spin wave simply overes-
timates coefficient of the power-law contribution to the re-
laxation.

The failure to capture intermediate time correlations, but
the success at capturing both short and long time behaviors
can be understood through barrier hopping. The short time
agreement is caused by intrawell relaxation that is captured
by the harmonic potential. The deviation at intermediate
times is caused by a barrier hopping mechanism. For the
harmonic potential, the system can only relax by sliding
down the sides of the well, but the real system has the ability
to jump over the barrier to the other side, which adds an

additional relaxation mechanism that occurs at intermediate
times. As the temperature is lowered, the importance of the
hopping mechanism will reduce. The hopping causes a loss
of correlations, which reduces the overall height of the cor-
relation function as it enters into the power-law regime. This
loss is not captured by the spin wave. However, barrier hop-
ping is not as important as expected for a single well periodic
potential since the particle will enter the well on the other
side. As discussed above, it is the diffusion of the well itself
that dominates the long time relaxation. Since the well is
formed by four nearest neighbors, the relaxation of the well
is determined by collective motions. The time separation of
single particle intrawell relaxation and the collective relax-
ation of the wells makes the harmonic approximation of this
long time relaxation accurate, which results in the agreement
of the power-law exponents.

VI. CONCLUDING REMARKS

In this paper we examined a two-dimensional rotor
model with local interactions. By using different truncated
basis sets, we are able to capture the behavior of this system
in both the high temperature and low temperature regimes.
For very high temperature, the rotors act independently, but
their interactions hinder each other. This results in long time
Debye relaxation with a reduced diffusion constant. For
stronger interactions, the rotors begin to show collective mo-
tions, which results in strongly non-Debye behavior. At
lower temperatures, the system behaves as a spin-wave sys-
tem with long time power-law relaxation.

As demonstrated for this simple planar rotor model, gen-
eralized Langevin dynamics can be applied in various forms.
The basic requirement is the ability to approximately remove
some degrees of freedom by introducing a memory kernel.
The standard approach to deriving the GLE is with projec-
tion operator methods that use a specific projection operator
~or inner-product!. These projection operator approaches
have been successfully used in many applications. One dif-
ficulty with the standard projection operators is the restric-
tion on the basis elements and the incorporation of the equi-
librium distribution in the inner-product of the space. If the
rotor orientation is the desired quantity of interest, practical
implementations of the standard projection operator ap-
proach restricts the basis set to one that contains the single
rotor orientation. The basis set of individual rotors is not
orthogonal with respect to the equilibrium weighted inner-
product, and applying the Gram–Schmidt procedure is nec-
essary, which can make the equations complicated and ob-
scure the physics.

Another approach to generalized Langevin dynamics is a
basis set approach. In this approach, we choose the basis set
and then define the desired quantities in terms of overlaps of
the basis set elements. Different basis sets may have an ad-
vantage over other basis sets as shown by the spin-wave fit in
the low temperature and long time versus the single particle
basis set in the high temperature and short time. This ap-
proach is also a projection operator technique, but the pro-
jection is with respect to the basis set instead of the measured
degree of freedom with an equilibrium weighted inner-
product. In this approach the projection operator is tempera-
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ture and interaction independent. One can easily perform
transformation on this basis set, like the Fourier transform
performed in Sec. III A. This truncation is independent of the
equilibrium distribution, which may be useful in studying
systems far from equilibrium. The basis set has the ability to
capture collective motions that are omitted in the standard
projection operator approaches, which is important in differ-
ent applications.

The two approaches to deriving generalized Langevin
dynamics are complementary, as are different basis sets, and
should be used together to determine various properties of
the system. The standard projection operator approach accu-
rately captures the many-body equilibrium effects while the
truncated basis set approach captures collective motions di-
rectly. These two strengths will be combined in future studies
of these Brownian dynamic systems. The inner-product
space, which defines the projection operator, should be cho-
sen to reveal the desired physics. As is standard in linear
algebra, proper choices of basis sets make computation
easier. The basis set approach is used to determine the prop-
erties of the facilitated kinetic Ising model in a companion
paper.34 Future work extends this approach to a dipolar sys-
tem that is similar to the original model studied by Zwanzig,
but where disorder in the particle positions is introduced.1,2
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APPENDIX A: THE BASIS SET AND GLE

The standard derivation of the GLE equation for many-
particle dynamics follows the Zwanzig–Mori projection op-
erator formalism. The general spirit of projection operator
methods is to separate the dynamics into different contribu-
tions, which can then be approximated through various tech-
niques. The equations after the application of the projection
operator are exact, but the approximations required to evalu-
ate expressions will differ with different projection operators.
Because the initial equations are exact, all projection opera-
tor methods are formally equivalent. The benefits and disad-
vantages of using different projection operators will depend
on the application. Hynes and Deutch discuss various classes
of projection operators and when these operators are gener-
ally applied.44 Generally, using different projection operators
correspond to different representations of the same dynam-
ics.

The quantities that we measure correspond to the ele-
ments of the basis setA1 defined above. The projection op-
erators P and Q are traditionally defined asP
5uA1&K11

21^A1u and Q5I2P. The matrixK11 is the matrix
elements that result from the inner product of the elements of
theA1 basis set,K115^A1uA1&. The standard GLE approach
defines this inner-product aŝAuB&5* dG A†Breq. In this
expression for the inner-product,dG denotes integration over
the phase space andreq is a weighting by the equilibrium

distribution. This definition is not necessary and results in a
complicated expression forK11 and forces us to use Gram–
Schmidt to construct an orthogonal basis set,

Q15A1 ,

Q25A22^reqA2Q1&^reqQ1Q1&
21Q1 ,

~A1!
Q35A32^reqA3Q1&^reqQ1Q1&

21Q1

2^reqA3Q2&^reqQ2Q2&
21Q2 ,

... .

The equilibrium weighted inner-product must be evaluated
with perturbation methods, and the equilibrium distribution
appears in many places in the expression, unlike the inclu-
sion in the initial condition in the basis set approach. Many
of these terms cancel, but the algebra is increased greatly.
This expansion makes the basis set elements complicated
functions of the perturbation parameter. As a result, one does
not necessarily achieve higher accuracy by including the
equilibrium distribution in the inner-product.

The complications caused by the equilibrium distribution
can be avoided by using an unweighted inner product. At
each order in the expansion, the resulting equation is equiva-
lent to the standard GLE since the two expansions only differ
by higher order terms. The GLE can be calculated from the
basis set approach resulting in the expression

Ċ~ t !5^Ȧ1~ t !A1~0!&52VC~ t !2E
0

t

M ~ t2t!C~t!dt,

~A2!

whereV is the decay rate,V5^A1uDuA1&K11
21, andM (t) is

the memory kernel,M (t)5^ f (t)u f (t)&K11
21. The memory

kernel’s Laplace transform can be easily expressed in the
basis set notationM (z)5M12Ĉ2(z)M12, with

Ĉ2~z!5@zI2M222M23~zI2M332¯ !21M23#
21.

~A3!

The expression forĈ2(z) is the result of Mori’s continued
fraction.

The projection operators are constructed from the defi-
nition of the inner-products. To any order in the perturbation
expansion, the projection operators will be equivalent, but
for some many-particle systems such as this problem, ex-
cluding the equilibrium distribution from the definition of the
projection operator brings benefits by separating kinetic and
equilibrium effects, making the projection operator indepen-
dent of the order of the perturbation expansion, and allowing
one to naturally change basis sets to measure different ef-
fects, such as single particle properties versus Fourier modes.

APPENDIX B: MATRIX ELEMENTS FOR TRUNCATED
BASIS SET EXPANSION

The matrix elements of the truncated basis set expansion
are calculated by applying the adjoint diffusion operator to
the basis set element and taking the inner-product of this
expression with the other elements of the basis set. In these
expressions, the basis set elements will once again be in
tensor form, witha, b, andg and i, j, k referring to the row
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of the matrix element andj, h, andn andp, q, andr referring
to the column. Other variables that appear in the expressions
are dummy values that are summed over. We also introduce a
permutation operator,Pi jk

abg , which implies that the permuta-
tion of all variables must be taken. Italic characters still refer
to lattice position and greek characters refer to cos(ui) or
sin(ui). Also following previous notation, the order of the
italic characters corresponds to the order of the greek char-
acters so that the expressions are similar to

~M22! i jkpqr
abgjhn5^~a2! i jk

abguD†~a2!pqr
jhn&. ~B1!

We used the fact that the basis set is real to exchange the
order in the inner-product. With this notation, the matrix el-
ements become the overlap ofD†(a1) i

a with the other basis
elements,

~M11! ip
aj5^~a1! i

auD†~a1!p
j &5dajd ip1JT ip

aj ,

~M21! i jkp
abgj5^~a2! i jk

abguD†~a1!p
j &50, ~B2!

~M31! i jq
abj5^~a3! i j

abuD†~a1!p
j &

52A2J^up
j u~B2! i

al&T iq
lhd ip .

In the above expression, the dummy index,l, is summed
over to give the final expression and the inner-products refer
to a matrix that is determined by the element by element
inner-product. Note the tensor form of the expressions,
which is consistent with the formalism presented above with
d ip anddaj being Kronecker-d functions.

We get a similar expression for the overlap of the
D†(a2) basis elements,

~M12! ipq
ajh5^~a1! i

auD†~a2!pqr
jhn&5J(

Ppqr
jhn

Tpq
jhdagd ir ,

~M22! i jkpqr
abgjhn5^~a2! i jk

abguD†~a2!pqr
jhn&

5 (
Pi jk

abg ,Ppqr
jhn

dajd ipdbhd jqdgndkr

1J/2T ip
ajdbhd jqdgndkr , ~B3!

~M32! i jpqr
abjhn5^~a3! i j

abuD†~a2!pqr
jhn&50.

It is important to note that (p.q.r ) is part of the definition
of the elements of the (a2) basis functions so that the per-
mutation gives exp(23t) for free diffusion.

The final overlap matrices that we must calculate is for
the D†(a3) terms,

~M13! ipq
ajh5^~a1! i

auD†~a3!pq
jh&

53A2J^ui
a~B18!p

jl&Tpq
lhd ip ,

~M23! i jkpq
abgjh5^~a2! i jk

abguD†~a3!pq
jh&

523/2J (
Pi jk

abg
^ui

a~B18!p
jl&Tp,k

lb dghdkp , ~B4!

~M33! i jpq
abjh5^~a3! i j

abuD†~a3!pq
jh&

55dajd ipdbhd jq1JT jq
bhdajd ip

12J^uW 2i
a ~B2!q

lh&Tpq
lz^uW j

b~B18!p
jz&,

where

~Bm8 ! i5Fcos~mu i ! 2sin~mu i !

sin~mu i ! cos~mu i !
G , ~B5!

has a similar definition as (Bm) i above. The dummy vari-
ablesl and z are summed over all arguments. From these
expressions we are able to approximately determine the ma-
trix elements in Eq.~8!, which allows us to calculate the
dynamics of the system.

APPENDIX C: DIRECT PERTURBATION AND
MEMORY KERNEL PERTURBATION EXPANSION

Figures 1–4 compare our truncated basis set expansion
with other perturbation methods that have been previously
used to study similar lattice systems. In this appendix, we
outline two alternative approaches and give the expressions
that result from these methods.

1. Direct perturbation

The direct perturbation approach has been successfully
used to study the Brownian dipolar lattice.1,2 This method is
easily understood by Laplace transforming the equation

Ci j
ab~z!5^requW i

a@ Iz2D†#21uW j
b&5^requW i

a@ Iz2D0
†#21uW j

b&1^requW i
a@ Iz2D0

†#21D1
†@ Iz2D0

†#21uW j
b&

1^req~$u i%!uW i
a@ Iz2D0

†#21D1
†@ Iz2D0

†#21D1
†@ Iz2D0

†#21uW j
b&1¯ . ~C1!

Similar to above,D0
† is the free diffusion operator andD1

† is
the term that comes from the interactions, Eq.~2!. The equi-
librium contribution,req($u i%) is determined using the same
method we use in Sec. III C. This expansion can be easily
calculated up to second order, as well as inverted into the
time domain. The resulting expression forD051 is

Cii
aa~ t !'~12J2/2!exp@2t#12J2t exp@2t#

14J2t2 exp@2t#1J2/2 exp@25t#. ~C2!

As we can see, this expression is a simple sum of polynomi-
als multiplying exponentials, which does not reflect the com-
plex behavior of our simple system for modest values ofJ.

2. Memory kernel expansion

The memory kernel expansion approach has also been
used to study the dipolar lattice.10,11 This expansion starts
from the Zwanzig–Mori projection formalism,
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Ci j
ab~z!5^req~$V i%!uW i

a@ Iz2D†#21uW j
b&

5@zI1L2M #21G ~C3!

with

Gi j
ab5^uW i

aureq~$V i%!uuW j
b&,

Li j
ab52(

k,g
^req~$V i%!uW i

auD†uW k
g&~G21!k j

gb , ~C4!

~M ! i j
ab5(

k,g
^req~$V i%!uW i

auD†Q@ Iz2D†Q#21QD†uW k
g&

3~G21!k j
gb ,

whereQ5I2uuW &G21^req($V i%)uW u is our standard projection
operator. In the above notation, we dropped the indexes that
are summed over in this matrix representation except for the
g andk, since these appear on a dipole vector,uW . The matrix
M corresponds to the memory kernel in mode-coupling
theory andL corresponds to the eigenfrequency. TheG is
the equilibrium correlation function that we calculated in
Sec. III C and@ Iz2L2M #21 is the mode-coupling analogue
of the dynamic portion of our calculation.

We perturbatively expandG, L, andK in terms ofJ to
second order, which gives

~@ Iz2L2M #21G! i i
aa'

1

2

1

~z11!2
4J2

z11
2

4J2

z15

. ~C5!

This expression includes all second order contributions, un-
like our simple approximation that only captures some of the
second order contributions. The (z11) term comes from
free diffusion. Similar to Zwanzig’s perturbation expansion,
the (z11)21 term comes from coupling of theuW i

a to its
neighbors and the (z15)21 term comes from coupling to the
basis functions that are in thea3 subset of our truncated basis
set expansion~although the expansion does not explicitly
include this basis set!. This result along with the direct per-
turbation result and our truncated basis set calculation are
presented in Figs. 3 and 4. As mentioned in Sec. IV, the
memory kernel expansion captures the initial many-body ef-
fects and accurately describes the system at short time, but is
not as accurate at capturing longer time behavior as the basis
set approach at the same order of expansion. So these two
approaches are to be viewed as complementary.
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