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Semiclassical approximations for quantum time correlation functions are presented for both
electronically adiabatic and nonadiabatic dynamics along with discussions of the operator ordering
and the classical limit. With the combined use of the initial-value representation of the semiclassical
propagator, a discrete algorithm to evaluate the Jacobi matrices, semiclassical operator ordering
rules, and the stationary-phase filter technique, a practical algorithm is developed to calculate
quantum time correlation functions. This approach holds considerable promise for simulating the
quantum dynamics of realistic many-body systems. Some simple illustrative examples are used to
demonstrate the feasibility and accuracy of the algorithm.196 American Institute of Physics.
[S0021-960626)02401-5

I. INTRODUCTION ary phase Monte Carlo(SPMO methods have been
. . developed?~2°The implementation of these and other tech-

It is well-known from linear response theory that the i es makes it possible in some cases to simulate the dy-
response of a system to a weak external force can be formyg,mics of simplified many-dimensional quantum systems.
lated in terms of a time correlation function for the reIevantFor example, there have been a series of studies on electron
dynamical variable of the systersee, e.g., Refs. 193 oqqfer dynamics as represented by the spin—boson model
Therefore, time correlation functions play a central role INJnd its multistate generalizatiéh:2® For system-bath-type

t_he study of_dynamlcal Processes, sugh as chemical reactiong, miltonians having harmonic baths, quasiadiabatic propa-
light scattering spectra, spectroscopic line shapes, transpa

properties, etc. Classically, the evolution of the system obeyé}ﬂOr pat.h integral methoqQUAPl) have also' been'devel-
.oped which propagate adiabatically a one-dimensional sys-

the Newtonian equation of motion, which serves as the ba5|ts : . . .
. ) . em in which the harmonic bath has been incorporated
for molecular dynamic§MD) simulations. Quantum me-

chanically, the probabilistic wave function propagates ac_through an analytic influence functioridl.** By virtue of

cording to the Schudinger equation, which in principle can- this algorithm and discrete variable representaiBivR)

not be solved by means of deterministic trajectory dynamicsquadrature’ a detailed study of quantum rates for a double

Due to the importance of time correlation functions, muchWeII coupled to a hgrmonlc bath was recently_ presefited
effort has been devoted to the development of methods t3/0Ng With @ comparison to approximate theories. Unfortu-
calculate them quantum mechanically; unfortunately, fev\pately, all of the methods described above are either not di-

methods have been successful in applications to realistifeCtly applicable to “real” nonlinear many-body potentials or
many-body quantum systems. In fact, it turns out that reag/Pecome numerically intractable for anything but the short

time quantum propagation is a truly formidable numericalime dyn?mics f’f such ;ysterﬁ%. _ _
problem because large sign fluctuations in the real-ime ©One “exact” alternative to the direct real time quantum
propagator can overwhelm the contribution from the physicaflynamics approach is based on the fact that real-time corre-
quantities of interedisee, e.g., Refs. 4—10Thus, to this day lation functions can be formally related to their imaginary-
the real-time propagation of many-body quantum system§Me  counterparts through  analytic  continuation
remains a daunting challenge. (1kgT=B—it/h).>>>"Thus, in principle, one can simulate
There have been several attempts to calculate quantufh quantum system with an equilibrium path integral Monte
time correlation functions exactly using the Feynman patHcarlo method at several values of imaginary time and infer
integral formulatiorf-®** For example, by virtue of the nu- the real-time quantities through the analytic continuation
merical matrix multiplication methodNMM),*? Thirumalai ~ (see, e.g., Refs. 31-B4In practice, however, the analytic
and Berne were able to calculate the symmetrized dipole-continuation is rather sensitive to statistical fluctuations in
dipole time correlation function for a proton moving in a imaginary time data so this approach has suffered from nu-
one-dimensional bistable potentidlWhile the NMM ap-  merical instabilities. Gubernatis and co-workers have re-
proach becomes prohibitive for many-dimensional systemszently introduced the maximum entropy methGUEM)
it is also fruitless to directly apply Monte Carlo methods towhich appears to improve the stability of the analytic
evaluate time correlation functions in such systems due teontinuation’*3®The MEM has proven to be reliable and
large phase cancellations. To treat the generic problem dfficient in similar ill-posed inversion problems, so its appli-
performing many-dimensional averages of highly oscillatorycation in path integral simulations seems novel and promis-
integrands—which are the origin of the difficulty in direct ing. Using this technique, Gallicchio and Bethéave, for
Monte Carlo calculations of such functions—several stationexample, calculated the dipole absorption spectrum of an
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274 J. Cao and G. A. Voth: Semiclassical time correlation functions

electron in fluid helium and found good agreement withfor a change of variables to the initial phase space

some previous analytic results. The implementation of thisvariables>’~>°

and other versions of the MEM allows one to evaluate the Inthe present paper, we show how the initial-value semi-

lower frequency portion of the absorption spectra with goodclassical approach for computing the quantum propagator

accuracy, but it probably requires further effort to determinecan be used to calculate time correlation functions. To be

the high-frequency portion which is essential in describingmore specific, we have rederived the initial-value semiclas-

short-to-intermediate time quantum dynamics, e.g., photodissical propagator from a discrete perspective and found an

sociation processes, optical control experiments, quanturalternative for evaluating the Jacobi matrices in the dis-

tunneling, and charge transfer. cretized formalism. Importantly, these new developments al-
As an alternative to the numerical evaluation of the exactow us to formulate the theory and a tractable numerical

quantum time propagation in many-body systems, one caglgorithm for both adiabatic andonadiabaticsemiclassical

develop approximate methods for quantum dynamics on time propagation of the nuclei in quantum systems. This,

which stable and feasible numerical algorithms can be baseglong with an initial-value expression for the evaluation of

to compute time correlation functions. One suchquantum operators, makes it possible to implement semiclas-

approaci’~*‘has been developed by the present authors angical dynamics in the calculation of quantum dynamical time

is based on the dynamical properties of the centroid variablgorrelation functions. The emphasis in the present paper is on

in Feynman path integratidh'! In this approach, called a formulation amenable to realistic many-body simulations.

“centroid molecular dynamics{CMD), a quasiclassical dy- The sections of this paper are organized as follows: In

namics algorithm is employed to compute an approximatiorSec. Il, the semiclassical approximation for quantum time

to the Kubo-transformed quantum dynamical time correlacorrelation functions is described and rederived in the adia-

tion function. There are now several encouraging result®atic dynamics limit from both the boundary-value and

from applications of CMD to a variety of nontrivial initial-value perspectives, the latter being shown to be supe-

system@1~%5 The simplicity and stability of this method rior for our purposes. This derivation is next generalized in

makes CMD a promising candidate for quantum dynamicasec. Il to the nonadiabatic limit. Then, in Sec. IV a

simulations in the condensed phase where other methods bgtationary-phase filter method is introduced to aid in the ac-

come impractical. tual implementation of the initial-value semiclassical meth-
In the present paper, however, a different and promisingdology and some numerical examples are studied in Sec. V

approach for the calculation of approximate guantum dyIO demonstrate the feasibility of the algorithm. Concluding

namical time correlation functions will be developed based€marks are given in Sec. VI, while the Appendices contain

on semiclassical arguments, some of which originate fronimportant supporting material.

the earliest formulations of the “old” quantum theory. In-

deed, since those early days many attempts have been madieSEMICLASSICAL THEORY: ADIABATIC DYNAMICS

to elgcidate a_nd utilize the relationship betw_een plassical dyA. Boundary-value formulation

namics and its quantum counterpart. In time-independent

quantum mechanics, this is commonly known as the WKB!- Van Vieck formula for the propagator

(Wentzel-Kramers—Brillouin approximation for one- It is well-known that semiclassical mechanics can be

dimensional problems, and it can be generalized to manytargely understood as an asymptotic analysis of functional

dimensional problems as in classicaimatrix theory®~48 integrals in terms of %, which to second order is equivalent

(Miller—Marcus theory and EBK (Einstein—Brillouin— to the stationary phase approximatfnin this subsection,

Keller) quantization theorysee, e.g., Refs. 3 and 49On  the boundary-value Van Vleck formulation of time-

the other handjme-dependergemiclassical mechanics were dependent semiclassical theory will be reviewed for com-

first studied by Van VlecK and later extended by many pleteness and as background material for subsequent devel-

others?6-48.51-55 opments. To start, the real-time propagator can be expressed
Although semiclassical approaches have found wide usaccording to Feynman’s prescription of path integrafsths

in various analytical theories, the development of semiclas- I

sical quantum dynamics as a numerical algorithm has been G(d1,0;t)=(cile”""""|qy)

hindered by two major drawbacks: the root search problem

and the caustics problem. These two difficulties can be :J aq(t"yexpis[q(t’)]/h}, (2.9

avoided in some cases, e.g., in the context of Miller's

S-matrix theory*®*® with the help of an initial-value repre- where the actiorg[q(t’)], given by

sentation in which an integration in phase space bypasses the t

root search. Moreover, Campolieti and Brumer have ex- S[q(t’)]zi dt’L{q(t"),q(t")]

tended the initial-value analysis to real-time propagation and 0

have thus suggested a semiclassical approach in which the t

classical trajectories evolve according to the initial phase =i dt’{zq(t’)-m-q(t")—=V[q(t)H 1}, (2.2

space representatiShEarlier, Miller and Heller proposed an 0

initial-value propagation of wave functions which introducesis evaluated with the Lagrangian[g(t’),q(t')] along the

integrations over initial and final positions and thus allowspathq(t) subject to the boundary conditions
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q(0)=q;, q(t)=q. (2.3 resulting in the divergence of the nonuniform expression Eq.
(2.4). In that case, one can resort to more accurate uniform

Following common notation, fonts with hats denote Opera'asymptotic approximatiofis which, of course, assume a

tors and bol(ifonts denote vectors_or matrices; in particular,, .o complicated form. Also, at a caustig the number of
the vectorsy={d;,Gz,....an} andP={P1.P2,....Pn} FEPre-  pogative eigenvalues of the matri%,(t,), denoted by

;ent, respectivelw-dimensional coordinates and their con- sigrfJy(to)], will change depending on the order of the caus-
jugate momenta in aN-degree-of-freedom system, whereastic. By keeping track of the time evolution of sigig(t)],

m i; the diagonal mass matrix. An application of the jne can express the Maslov index explicitly as
stationary-phase approximation to Eg.1) give$

1 \N2 7 _ . _ )
Gsc(QlaQt;t)zzst: (m) \/de‘( - &qjsc;t) V(t):% {sign Jq(ty )] —sigrlIq(t )1}, (2.10

X exp(iSg/h), (2.4

wheret, denotes théth caustic time as the stationary path
where the summation is carried out over all possible stationevolves in time from 0 td. In fact, it can be seen from Eq.
ary paths, an®,=S.{q;.0;;t) is the classical action associ- (2.6) that the Maslov index is simply the number of negative
ated with a given stationary path. The stationary phase coreigenvalues of the second-order derivative matrix, which
dition [8S/5q(t')]=0 determines the classical trajectory, will be discussed later in the context of the initial-value rep-

thus leading to the Euler—Lagrange equations resentation.
Apart from the difficulties associated with caustics, the
d [dL} dL A% . : .
— | —=|]-—==m-g+—=0 (2.5  root search problem poses a formidable task in the numerical
dt’ \dq/ dq aq implementation of Eq(2.4). Unlike an initial-value problem
with the boundary conditions in Eq2.3). where the trajectory follows a unique path in phase space,

In the short time limit, the determinant in E(.4) is the boundary-value problem requires one to search for a so-

positive and this semiclassical expression is exactly thdution to Eq.(2.5 which satisfies both the initial and final
original Van Vleck short-time propagatdt.In general, the conqmons in 'Eq.(2.3), thus giving rise to .the possibility of.
determinant, termed thean Vleck determinantan be writ-  Multiple solutions. For many-body potentials there can exist

ten in a more useful form as a very large number of such paths for longer time dynamics.
, One also might obtain imaginary paths in the case of quan-

/ 9°Sqt | 1 . tum tunneling. The numerical difficulty associated with the

de( B aqlaqt) = |detJo()] ex —imv()/2], search for these solutions increases drastically with the di-

(2.6 mensionality of the system.

wherep(t), known as the Maslov indeX, is the number of
sign changes of the determinant as the trajectory evolves in
time from O to t. The Jacobi matrices, defined as
Jqo(t")=aq(t")/dp, andJ,(t") =dp(t’)/dp,, are the solutions

of the coupled Jacobi equatioh® given by 2. Time correlation functions

Jq(t’)z m-1. J(t1), As stated garlier, many physicgl quantitie; of interest can
) 2.7 be related to time correlation functions. In their most general
Jp(t")=—K(t")Jy(t"), ' form, these functions can be expressed as

with the initial conditions
J4(0)=0,

Jp(0)=1, 29 =Z*1f dqlf dqu dqtf dq;f day

where | is the N-dimensional identity matrix and(t’)

(A(1)B(0))=2"1 Tr[efﬂl:ieilrit/ﬁAefiI:it/hé]

is the time-dependent force constant  matrix, X p(01,02:8)

K(t")=9?V(t')/dqan, evaluated along the stationary path x(q |e—iI:It/h|q >*<q/|e—iI:|t/ﬁ|qr>
V(t')=V[gt')]. Clearly, the Jacobi equation in EQ.7) is ' 2 ' !

the same as the classical equation of motion describing an x{a|Alay Mg} Blay), (2.11

oscillator with a time-dependent force constant determined

by the stationary trajectory. whereZ is the partition functionZ=Tr exp(— 8H), andp is

~The nonuniform semiclassical formula in EQ.4) is  the canonical density matrix at temperatge 1kgT, i.e.,
valid as long as the prefactor in E€R.6) remains finite. It ¥

-B) = - BH - -
happens at certain times that two or more paths may coales@ddi92;5) (aze”"|az). While Eq.(2.11 is a general
at a focal point, ocaustic where expression, for the present discussion we will specialize it to

the case in which the operatofsand B are dependent on
detJ4(t;) =detaq(t;)/dp,=0, (2.9 position only, giving
J. Chem. Phys., Vol. 104, No. 1, 1 January 1996
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276 J. Cao and G. A. Voth: Semiclassical time correlation functions

~ A gator from a discretized perspective which leads to an effi-
<A(I)B(0)>=Zflf d%f dqu daip(d1,02;8) cient and transparent alternative for evaluating the Jacobi
. A matrices. These new developments allow us to formulate an

X(q|e” M| q,)* (qle Mg, ) A0 B(qy).  initial-value semiclassical algorithm for the quantum propa-

(2.12 gator in both the adiabatic and nonadiabatic limits. The cen-
’ tral result of these efforts in both cases is an initial-value

The case of general operators depending on both positiogxpression for the coordinate representation of the propaga-
and momenta will be discussed in Sec. Il B within the con-tor, i.e.5¢

text of the initial-value formulation. By substituting the

: : - : 1
semiclassical form_ula in Ec{2.4)_ for the propagators into Gied 91,031 = N J dp1|deth(t)|1’2
the above expression, one obtains
(A(1)B(0))sc Xexplia(dy,py,G;t)/h—iTu(t)/2],
(2.149
—7-1 .
=Z J dqlf dqu daA(Ar)B(02)p(d2,01:8) where the phase is a canonical transformation of the classical
_12 actions, i.e.,
1 2 d J0 d J0 . /
XN et--det=~|  expiASy/h), a(dy,p1.Ge;t) = Sef 41,4(t);t]+p(t) - [q—q(t)],
st P1 P2 (2.1

(213 and the indexu(t) is related to the Maslov index by
where the subscript “st” denotes a summation over both . T
the forward and backward stationary paths and ()= w(1) +sigriJ(1) Jo(V)]. (216
ASg=S(d1,0; ;1) — Ssd2,0¢ ;). In principle, time correla- Here, the Jacobi matricek,(t) and J,(t) are solved from
tion functions can be evaluated based on ®dl3), but such  Eq. (2.7) or by the discrete approach derived in Sec. Il B 2.
a calculation would be fully vulnerable to the caustic andThe stationary-phase condition determines the classical tra-
root search problems described previously. Therefore, thgctory from the usual initial condition&;,p;), namely,
above expression is primarily of formal intere@t.is useful, (=0 1)
for example, when one considers the classical limit, cf. Ap- 90/~ A(41.P1:0),
pendix A) A much more useful approach is based on the  p(t)=p(qg;,p;;t), (219
initial-value formulation of semiclassical dynamics and this

will now be discussed. which is an initial-value problem rather than a boundary-

value problem as in Ed2.3). Also one sees from Eq2.14)
that a vanishing determinant, dgf(t), does not lead to a
B. Initial-value formulation divergent prefactor at the caustics.
Before proceeding to Sec. Il B 2, we note that some care
is in order when evaluating the initial-value propagator ex-
The initial-value representation of the semiclassicalplicitly. Unlike the nonuniform asymptotic expression in Eq.
propagator is a recasting of the semiclassical boundary-valu@ 4), the initial-value expression E¢R.14) is nonsymmetric
problem in terms of the initial position and an integral overwith respect to the exchange of the coordinajgsand g,
the initial momentum. Since this approach is formally thus contradicting the symmetry of the Green’s function for a
equivalent to the Van Vleck form, their evaluation is for- real time-independent Hamiltonian. To remedy this, one can

mally equal. However, the initial-value representation is nuonstruct a symmetrized propagator by inserting a complete
merically superior since the stationary phase trajectories igoordinate basis set at the half-time, i.e.,

the initial-value approach are determined from initial mo-

menta and coordinates. Thg_troublesome boundary-value G(%,Qt;t):f dq3<qt|e7il:|t/2h|q3><q3|efilz|t/2ﬁ|ql>

problem thus becomes an initial-value problem. Moreover,

the Van Vleck determinant, which vanishes at the caustics,

appears in the numerator, instead of the denominator, of the =J dgsG(q;,qs;t/2)G(q4,q5;t/2), (2.18

semiclassical expression. The initial-value representation is a

global-time asymptotic semiclassical approximation which iswhere the symmetry property of the Green's function for

reducible to the Van Vleck formula by a stationary phasetime-independent Hamiltonians has been used. In the evalu-

integration. ation of time correlation functions, this symmetrization is not
Recently, Campolieti and Bruntér presented an in- necessary.

depth study of the initial-value formalism, with an emphasis

on a derivation of the Maslov indices and canonical transfor- o

mations among alternative phase-space representatim%.A new derivation of the propagator

Their analysis follows a simple procedure of concatenating The approach reviewed in Sec. |l B 1 involved solving

short-time propagators by sequential stationary-phase intéhe Jacobi matrices from the Jacobi equation which, in the

grations. In Sec. Il B 2, we rederive the initial-value propa-case of nonadiabatic dynamics described in Sec. Il below,

1. Propagator
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becomes a complex integro-differential equation. To avoid  Next, the quantum fluctuations are evaluated by a
this difficulty, we set out to find an alternative to evaluate thesecond-order functional derivative, giving

Jacobi matrices and have thereby found it necessary to derive

the initial-value express_ion from anew pgrspective. Straig_ht- st _m (26,,= 8, j41- 81— 8 €K, (2.26
forward and self-contained, this derivation leads to a dis- dQ;dq; ‘ '

cretized expression for the Jacobi matrices and a simple in
terpretation of the Maslov-like index. These genera
expressions are applicable to both adiabatic and nonadiabatic 524 m

Iexcept fori=j=P, which is given by

dynamics, and are therefore in some sense more general than S = Kpp, (2.27
.. . &qpaqp € 2

the original expressions.

To start, the real-time propagator is rewritten as where K is the time-dependent force constant matrix

o K; ]—aZV/aq aq; evaluated along the stationary path.
G(Qo.q:;t)=(aile |do) The determinant of the matrfx?¢/aq; og;] in the largeP
. limit can now be defined as
:f dp(al ) (pile™ ™| qp), (2.19 24
_ detDy(t)= lim dep e m™ 1 ——, (2.28

where a complete set of momentum states has been inserted. Posoo dq;dq;

It is then essential to evaluate the position—momentum

propagator from the initial Coordina% to the final momen- where dq; refers to the discretization of time int® slices
tum p,, which differs from the usual position—position but not to the system dimensionalily. This determinant is
propagator G(qo,0;;t) only in the terminal state. The the product of the eigenvalues and hence the phésk of
position—momentum propagator in the discretized path inteDp(t) is determined by the number of negative eigenvalues
gral form is given as of the matrix, i.e.,

detDy(t)=|det Dy(t)|exdimu(t)]. (2.29

P N/2
- 1
g HUA ( ) fd explipplt
(P 190) ~ hW2 H 2mite o expti belh), Thereby, the semiclassical limit of the propagator in Eq.
(220 (2.20 can be explicitly written as

where ¢p is a discretized canonical transformation of the
action, given by

P
:;12

_G(V(Qi)+V(Qi1))

- 1
—iHt/A —

(ple |do)sc hN[detD,(1)]

(di—Qi-1)-m-(di—0di-1) X exdipg(t)/h—imu(t)/2], (2.30

where ¢(t) = S;[q;,9(t);t] —p(t) -q(t). Thus, the propaga-
—Pi-Op- (2.21  torin Eq.(2.19 can be rewritten as

2

Here, P is the discretization numbeg, is the discrete time  G._(q,,q,;t)= =% f dpo|det I (t)| ——
incremente=t/P, andm is, as before, the diagonal particle e h™ ° P V|detDy(t)]

mass matrix. . .
The semiclassical approximation is the functional appli- Xexplil po()+p(1)- ql/A =i mu()/2},
cation of the stationary-phase approximation. The stationary- (2.3)

phase conditiofidg/dq; =0 in the present case determines

the discretizedstationary path foi % P as where a change of variables from the final to the initial mo-

menta has been carried out which introduces the Jacobi fac-

(is+1+9i-1—2q;) tor J,(t). It is proven in Appendix B thaD,(t) is equal to
= Elz = +VV;=0 (222 the Jacobi matrix, i.e.,
and, fori=P, as Dp(t) =Jp(1). (2.32
m € This result allows us to reach the final expression of the
p:;'(QP—QP—l)—E VVp. (2.23  initial-value representation given by E(R.14 with p, in

that expression replaced Ipy.
It is easy to recognize that in the continuous limit E2122)
is equivalent to the classical equation of motion, that is

m-G(t')+ VV[q(t')]=0 (2.24) 3. Time correlation functions

By substituting Eq(2.14) into Eq. (2.1J), it is straight-
forward to obtain an initial-value semiclassical expression
p:=p(t)=p(do,Po,t). (2.29  for general time correlation functions, i.e.,

and Eq.(2.23 imposes the terminal boundary condition
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o 11 , , We then make a change of variablegjte- (q; — q3) andg;
(A(DB(0))isc=7 fan f d%f dQZJ thf d%f day = (g} + g5)/2, integrate over the first variable resulting in a
delta function of momentum which is also integrated over,

< [ g d . and finally arrive at the initial-value semiclassical represen-
Py | dp2p(dy,dz; ) tation of the Heisenberg operator, i.e.,
X g(0,P1. 0 i1)G* (G2.P2. 0 ) (Gl VP AG,PIe U gy e
X (ay Alag {ailBlay), (2.33 1
. : ) t. ’ : l> . “hN f thf dplf dp2Aw(d, [Pa(t) +p2(t)1/2)

whereg is the integrand in the initial-value propagator in Eq.
(2.14, ie., X 9(G1,P1,0:1)9(02.P2, G, (2.39
9(d1,P1,0::t) = |det‘Jp(t)|1/2 where the classical momentum in the symBgj(q,p) takes

; . ; the average value at the end of the trajectories which are
Xexdi ,P1,0¢;t) /A t)/2]. . :
Hia(G P Git) mu(V/2] used in the computation f(q;,p;,0; ;t) andg(d,.p,.G; ;t)*.
(2349 Thus, momentum symbols in the Weyl ordering of Heisen-
In this caseA andB are general operators which can dependberg operators are essentially the symmetrized final momen-
on both position and momentum. If one knows the positionfum variables from the initial-value semiclassical representa-
matrix elements of these operators, and if they are “simple’tion- It can be shown that Eq2.37) is recovered from the
products of position and momentum, then one can readilj—0" of Eq. (2.39. With this formulation of semiclassical
express the above correlation function in a more eXp|icitl-|e|senberg operators in hand, the time correlation function
form. For example, ifA andB depend only on the position N Ed.(2.36 can be written in the initial-value representation

operator, then Eq2.33 simplifies to read a:"? )
AMBO)= ran | o [ aa, | aa [ apy [ aps <A(t)Bl(°)1>is°
X p(6l1,G2;8)9(01 Py, G ) :medq"f dqlf dqu dqtf .
X9 (G P aDAGBIG). (239 % [ dpap(do. 023 B AWGLP(0 +Po 1D

_In many cases of interest, however, the opera@oand R
B are complicated functions of positions and momenta. In X(q1/B(0)|do)g(d1,P1,0:;t)g* (d2,P2, 0 5t), (2.40

such cases, it is better to concentrate one’s efforts on the time . . A
) . o Where the zero-time matrix elemeftd,|B(0)|q, has been
correlation function written in the form

left in a general form.

A 1 The form of Eq.(2.40 also suggests a series of approxi-
(A(1)B(0))= 7 f dQOJ dchf ddzp(do.d2;8) mations in whicf*
- ~ * |ﬁ)n
X( | A(t)[a1)(d1/B(0)|do), (2.39 AW(q’p):AO(q’panl (T AL(9,p), (2.41)

whereA(t) and I§(O) are Heisenberg operators. The focus
therefore shifts to deriving a semiclassical initial-value ex-whereAq(q,p)=A(q,p) is the classical function of the dy-
pression for the matrix elemert,|A(t)|q,). Through the namical variables andp. In particular, ifAy(q,p) is a poly-
Wey! correspondence, an operator can be expres$é8®as nomial such a truncation will be exact for sufficiently large,
1 but finite, values ofn. In general, such a truncation is not
NAG D) al) = — ' "+ q! ' strictly equivalent to the semiclassical approximation be-
(aalAc@.plas) h" f 9P Aul (a1 +42)/2,p'] cause the error is in the preexponential part. Nonetheless, the
truncation is tantamount to that used by Widiien his for-
mulation of the leading quantum correction to the classical
whereAy(q,p) is the classical symbol corresponding to the partition function.
quantum operatoA(q,p). By combining Eq.(2.37) and the
initial-value expression in Eq2.14), one obtains

<q2|eth/hA(aaﬁ)eith/ﬁlql%sc

x elP’ (@t (2.37)

lll. SEMICLASSICAL THEORY: NONADIABATIC
DYNAMICS

1 Many advances have taken place in the field of nonadia-
=N j dqu’ dQéJ dp’ Awl(a;+05)/2,p'] batic dyna_lmics §imulatio?16.‘71The theoretical bas!s for.sev- _
eral algorithms is the Pechukas theory of nonadiabatic colli-
iD= G | e U\ fey? | e iy \% sions based on the stationary phase approximation to
SRR CE RIVECHE |%)ise: Feynman path integraf$:>*As far as the nuclear motion is
(2.38 concerned, classical dynamics has been assumed in most of
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the nonadiabatic dynamics algorithms based on the Pechukas | <,u|u(t,t’)f(t’)u(t’ 0| v)

formulation. Clearly, neglect of the quantum nature of the  (f(t'))q= (Ut ut o) (3.8

nuclear dynamics is inadequate for treating light nuclei such P '

as protons. Therefore, the combination of the initial-valuewhere the denominator is independent of the variahland

semiclassical approximation and nonadiabatic dynamics wilf(t") is in general an operator. This quantum average is car-

represent a more accurate description of such systems amiéd out by assuming a particular nuclear pgth’) and is

this is the focus of the present section. thus a functional of the nuclear paths. Equatit®4)—(3.8)
Consider the dynamics of nuclei on a potential resultingrepresent the exact formulation of the nonadiabatic quantum

from multiple electronic diabatic surfaces. One then needs tdynamics for a given nuclear patftt’).

extend adiabatic dynamics to nonadiabatic dynamics to allow Following the Pechukas analysis, we apply the stationary

for the possibility of transitions between the different sur-phase approximation to E¢3.5 and thus obtain the equa-

faces. To put the formalism in the most general context, waion of motion for the nuclear coordinafés*

consider the Hamiltonian of a many-body, multilevel system

written as m~d(t’):—<aHd[q(t,)]> ,
d

: aq(t’)
H=Ho(q)+Hq(a), (3.9
h bef is th llection &f lear d ¢ which is to be solved together with Eq8.6)—(3.8) to obtain
¥V ecrieq, a? he ore, Is t i co ection H Eup e’ar egre’e}s,zo the nonadiabatic stationary solutigh Clearly, the coupling
.re(ra] Okm of the system o fmte;est, al @'_th(t |)_|'m'_?(t ) between the diabatic state propagation and the stationary tra-
s the meth energy term or_t € nuclei. The Hamiltonkdg jectory imposes the self-consistency condition for the solu-
can be explicitly expressed in terms of the elemédmtgfor

o ; X tion of the nonadiabatic trajectories.
theith diabatic surfageandh,; (for the coupling between the With the stationary solutions in hand, the semiclassical
ith andjth diabatic surfacgsi.e.,

expression for the propagation is given as

(3.9

=> h;+ hy: . 2 e 1
Ha@ =3 i+ 2 hy B2 (uale W0 [ dpldetd, 0]
Here, the elements are defined as X exdi a(t)/h—imu(t)/2]
hii =) Vi (a)il, 3.3 (3.10
and which is the same as the adiabatic semiclassical expression
_ o ) in Eq. (2.14 except that thes,; is now defined as
hij:||>vij(q)<J|+|J>ViTj(q)<||: (3.9 < : t - :
v Qi ;)= o) =i In T ,,[gs(1)],
where the off-diagonal coupling elements satisfy the Hermit- ool O G So{ 1,031 ol At ](3_1])

ian relationV;; = V. The potential energy termg; in the

elementsh;; describe the diabatic surfaces, so the above forS0 that ¢g(t)=S,,4—p(t)-q(t) and «a(t)=S,, +p(t)

mulation of the problem is completely general. -[a;—a(t)]. The prefactord,(t) obeys the Jacobi equation
For the Hamiltonian in Eq(3.1), the matrix element of which can be obtained from taking the partial derivative of

the nuclear time propagator in the diabatic basis reads ~ E9:(3.9) with respect to the initial valugs, or qo, giving the
Jacobi matrix equation

G,w(qo,qt:t)=f aq(t")expliSLq(t’) /AT, [a(t')], M- J4(t" )+ (V' -V'Hg)gJq(t')
(35 -
whereSy[q(t’)] is the action functional associated with the ~ ~ 7 fodt”[«V,Hd)u(t,vt”)(V”Hd»d_(V’Hd)d
kinetic energy termH, and T, is the overlap between the
initial and final diabatic states. Explicitly, the time evolution (V"Hg)qgl J4(t")=0, (3.12
operator for the diabatic Hamiltonian evolves according to L oo , .
the time-dependent Schiimger equation whereV'=d/aq(t’), V'=dldq(t"), andm-Ju=J,. The latter _
equations are the nonadiabatic analog to the adiabatic Jacobi
. au(t’) . . equations of Eqs(B6) and(B7) (cf. Appendix B.
% at’ =Hqlq(t")Ju(t’) (3.6 Solving the integral-differential equation in E®.12) is

_ o N N ) a formidable task. In addition, the fact that the Jacobi matri-
with the initial conditionu(0)=1. The transition amplitudes ces are generally complex introduces ambiguities in defining

are thus given by the Maslov indexu(t). To circumvent these difficulties, we
T 1= wlu(t’ 3. resort to a dlscretlze_d expression for the Qacobl matrix which
wla(t))] (lu(t)]») S is equivalent to solving the Jacobi equation. To be more ex-
which is a functional of the nuclear patt’). plicit, the Jacobi determinant, d&i(t), can be evaluated in a
To facilitate the subsequent analysis, the quantum avewdiscretized format as in the previous section, giving in the
age over the diabatic basis is introduced as nonadiabatic case
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a2¢3t m * H 1%
aqiaqj:;(zgu_éi’j+l_5i’j_l) |(ﬁ):J\7de é¢(x) , (41)
PHyla(t")] - which is a generic integral having a complex exponent. If
T €0 I +iheCiy, (3.13 is small, the integral is dominated by regions where the
' d phase¢(x) is stationary, i.e., where’(x)=0. In the non-
except fori=j =P, which is given by stationary regions, the complex exponential is highly oscil-
Py m e | PHLH)] = Iato_ry, thus effectlve!y_cancellng the contnpuuon from tho;e
=— - (———=—) +ih = Cpp. regions. Therefore, it is advantageous to introduce a weight
dqpdQe € 2 99p q 2 function which suppresses the oscillatory integrand and thus

(3.19 acts effectively as dilter. A simple example is a Gaussian
The quantum fluctuation correlation matfx ; here is given filter, defined as

by W, (x)=exp{ — e[ ¢’ (x)]%}, 4.2
o IH4la(t")] uct! t) dHq[q(t")] wheree is the filter parameter. Then, the integration in Eq.
" aq; t 99 g (4.1) becomes
_<(9Hd[Q(t’)]> <8Hd[q(t’)]> _ (315 | (h)= f, dx &40t (x), 4.3
é)qi d O')qj d *
The dimensionality implicit in the above equations is such®d: for example, an expectation value is approximated as
thatﬁ2¢s{aqiaqj is a matrix of dimensiofN X P. After taking [7.dx A(x)e ¢k
the limit P—, we obtain the explicit expression for the (A)= 7 dx %0
prefactor -
2 Z L dx AX)W,(x)e! ¢/
| Py I AX)W(X) (4.4

det.Jp(t)=PI|21oc det em T (3.16 TR dx W(x)e P
A general form of filters and the relationship between the

which are complex and defined counterclockwise in the <:ometﬁt(_‘\n:‘\d integral in £q(4.3) and the exact one in Eq4.1)

H H =16,19
plex plane. Therefore, the Maslov-like indgxt) equals the have been analyzed in detail by oth&ts:®*It should be

. : noted that there is some flexibility in the definition of the
summation of the phase angles of the complex eigenvalues

of the discretized second-order derivative matrix in Eqslpreexponen.tial factor of the filter function d(_apending on the

(3.13 and (3.14) in the largeP limit. The above derivation final nu_merlcal target, 'but these factqrs will cangel in the
' L ' . . calculation of expectation values or time correlation func-

represents a different approach for calculating the Jacobi m%_ons as outlined below

trices and the Maslov-like index without solving the Jacobi Although approximétions to the exact integrals, Eqgs

ggzstllicr):il Itis applicable in both the adiabatic and nonad|a(-4.3) and (4.4) converge much faster than the original inte-

grals. If the parameteris small, the filtered integral is closer
to the exact one but takes much longer to converge; in the
case ofe—0, the exact integral is recovered. If the parameter
IV. NUMERICAL ALGORITHMS e is large, the filtered integral is localized near stationary
points and thus ignores fluctuations away from those points.

Though the initial-value semiclassical expression in EQ.z nroper choice of the filter parameter is indeed crucial for
(2.14) represents a significant simplification of the exact pathy,ying out an accurate and efficient calculation. Given a

!angraI, the '”t‘?gfa”@ of Eq. (2.34 as a function of the required level of convergence, the filtered integral exhibits
initial momenta is oscillatory and thus does not render |tselfpoor statistics fore<e,..., but it may deviate substantially

to simple integration schemes. Since the usual Monte Carlgq ., the exact value foe>e. ... Thus. the optimal choice of
max* 1

method is not applicable to integrate such complex expo, is |ocated in the intermediate regiogyin< €< €max, Where

nents, one has to introduce a positive definite weight funcyq fiitered integral becomes both stable and accurate.

tion such that the integration domains which dominate the Following the above discussion of the stationary-phase
integral will be sampled preferentially over those which jer method, it is now specialized to treat the integrations in
barely contribute because of phase cancellations. Indeegq jnjtial-value representation of semiclassical time correla-
such an approach, termsthtionary phase Monte Carlias 4 functions explicit in Eq(2.33. Since the general term

been proposed and applied in some quantum dynamical pamql,plm t) defined by Eq(2.15 is the phase, the filtered
integral simulationg?~1%1°Here, we will describe a simpli- propagator is given by

fied version of the stationary phase method as it applies to
the present semiclassical formalism. _ifus _E i

In general, consider a one-dimensional integral of the (azle |ql>iSC_h dp19(1,P1, G2 ) We(Py),
form (4.5
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where the filter can be defined as notational simplicity. It is also straightforward to write down
We,plzeXF[— Gp(é’a/ﬁpl)z] the filtered expression for the semiclassical time correlation
function. For example, the case of position-dependent opera-
=exp(— ex{Jp([a—a(t)1}?) (4.6 tors is given from Eq(2.35 by

and a one-dimensional notation has been adopted here for

ADB(O _f dayf dazf daf dpyf dpzp(dys,dz;B)Kg(HWe p We o W, q A(Gr)B(1)
(AB(O0D ) sc™ G4, T dq,T daf dpys Apop(a, 0z BIKg(OW,p Wop Weg

(4.7

whereK(t)=9(d;,p1,0::t)*9(d2,P2,0;:t), and a filter is  right of the origin, which indeed correspond to two possible

also applied here to thg, integration, i.e., classical trajectories, the direct path and the indirect path
) bounced from the repulsive wall.
We o, = exp{ — €q[ d( a1~ a2)/ 9G]} The squared amplitude of the time propagator for the

_ 2 potential in Eq(5.1) with the same parameters as in Fig. 1 is

= exp{— e[ P1() = p2(D ] (4.9 plotted as a function of time in Fig. 2, where the exact and

In Eq. (4.7, the quantum density matrix element Semiclassical results are represented by a solid and dashed

p(d;.,9,;8) also provides a natural “filter” for the integra- lines, respectively. The initial momentum was integrated on a

tion over the variables; andq,. The functionsA(q,) and ~ 200-point grid from—10 to 10 with a filter parameter of

B(q,) in Eq.(4.7) may also aid in the filtering, depending on €,=0.01. Despite the small discrepancies due to the nature

their form. Note that the denominator of E¢.7) equals the  of the semiclassical approximation, good agreement with the

partition functionZ, but it has been written so that the over- €xact result is achieved.

all equation is amenable to a Monte Carlo algorithm. It

should also noted that the trajectorgg4) in Eq. (4.6) which

contribute toW, , andW,, in Eq.(4.7) are different(i.e.,, ~ B. Anharmonic quantum oscillator: Position

they have different initial momentand therefore must be Correlation function

treated as such. In this subsection, the initial-value semiclassical method
is used to compute the position correlation function for an
anharmonic potential, defined as

V. NUMERICAL EXAMPLES V(q)=39%+3q* (5.3

A. Propagator for a solvable potential with m=1.0, #=1.0 and 8=1.0. The position correlation

To demonstrate the feasibility and accuracy of the initial-lunction was computed with filters on the momentum inte-

value semiclassical approximation and the stationary-phas#/ations having a value af,=0.1. The thermal density ma-
filter technique, we first present a numerical study of a solvi'x was calculated by the numerical multiplication method
able potential, given by (NMM),*2 and the coordinates and momenta were integrated

on grids. The numerically exact correlation function was ob-

tained from a harmonic oscillator basis set calculation. In

V(Q):? (5.1 Fig. 3, the real parts of the exact and semiclassical time
correlation functions are plotted as functions of time. The

with m=1.0 and#=1.0. The real-time propagator of this semiclassical approximation is more accurate for time corre-

potential is given in a closed form By lation functions than for propagators, probably because cor-
_ ) . > 2 relation functions result from a thermal average of forward
G(a1,a;0)=(myaqi/irt)expim(q; +q;)/2At] and backward real-time propagators and are thereby less sen-

(5.2) sitive to errors introduced by the semiclassical approxima-
tion. In general, the agreement between the exact and semi-

wherel , is the modified Bessel function of index=3/2. In  classical results is excellent for this system.

Fig. 1 is plotted the unfiltered integramdof Eq. (2.34), the

filtered integrand in Eq(4.5), and the filter in Eq(4.6) as a

function of the initial momentum foq,=3, q;=4, t=3. C. Double well: Reactive flux

The filter parameter in Eq4.6) was taken as,=0.01. It i . .

. L N As a final example, the flux—flux correlation function
can be seen clearly from Fig. 1 that the integrand is highly ; .
. . . was calculated for a double well potential, defined as
oscillatory except near the origin. The filter selects two sta-

tionary regions, one to the left of the origin, the other to the  V(q)=— 3%+ iq* (5.4

Xlgp(mayq,/ifit),
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----- without filter 0.6 T T T T
— with filter 4 Exact

04} + Semiclassical

02+

cos(Q)

time

FIG. 3. The real part of the initial-value semiclassical position correlation
FIG. 1. The unfiltered integrarglin the initial-value semiclassical approxi- fynction (solid diamonds for the potential in Eq(5.3 at a temperature
mation(dashed ling the filtered integrand in Ed4.5) (solid ling), and the  3=1.0. The numerically exact result obtained from a basis set calculation is
filter function (bold line) plotted as functions of the initial momentum for  spown by the solid line.
the 142 potential withg,=3, g,=4, andt=3.

~ . _ —BH/2—iHt/A
with m=1.0, 3=1.0, and%=1.0. The quantum dynamics of Gy 8z:8.0)=(0zle”” 192) .7
a double well exhibits coherence at low temperature, thermeguch that the flux—flux correlation function can be expressed
activation at high temperature, and assumes an exponentiaii7 2
decay in the presence of dissipation. Miller and co-workers

1 -
have_ shqwn that_ thermal rate constants can be obtgined from Crg(t)=— lim T [1pG(qp,q; 58,1)|2
the time integration of the flux—flux correlation function, de- a—dp
fined ag? fn x ~
L +ReppyG(dy,a;8,1)G*(ap,0;8.1)], (5.8
Cre(t) =Tr(Fe™ A2 IHVIEg=pRIZIRUL) (5.5 wherep, is the momentum operator acting qg. Although
where the flux operator is given by the flux—flux correlation function depends upon the choice of
1 the dividing surface, the rate constant is a physical quantity
F= T [po(q—ap)+ 8(q—ap)P] (5.6) independent ofy,. For convenience, we choosg=0 so

that the first term in Eq(5.8) vanishes for a symmetric bar-

with g, defined as the position of the dividing surface. To befer- In Fig. 4, the semiclassical value Of(t) is plotted for
more explicit, we define a complex time propagator as

0.4 T T T T
— Exact
0.5 1 ¢ Semiclassical
----- Semiclassical 03
04T — Exact 1
L 03] & 027
9
02T 0.1 F
017
0'0 1 1 1 1
0.0 0.0 0.2 04 0.6 0.8 1.0
0

. time
time

FIG. 4. The initial-value semiclassical flux—flux correlation functisnolid
FIG. 2. A plot of |G;s((3,4;t)|2 vs time (dashed lingfor the 142 potential. diamonds$ for the potential in Eq(5.4) plotted along with the numerically
The exact result is shown for comparison by the solid line. exact resulf(solid line) obtained from a basis set calculation.
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the double well and compared with the exact result obtaine&cience Foundation Presidential Young Investigator Award, a
from a basis set calculation. Again, excellent agreement i®avid and Lucile Packard Fellowship in Science and Engi-

obtained. neering, an Alfred P. Sloan Foundation Research Fellowship,
and a Camille Dreyfus Teacher-Scholar Award. The authors
VI. CONCLUDING REMARKS are indebted to Charles Ursenbach for proofreading the

. . . . manuscript and to Li Liao, Camilla Minichino, and
In this paper, we have discussed the semiclassical formLhigoberto Hernandez for useful suggestions

lation of quantum dynamical time correlation functions and
have also investigated the numerical feasibility of the semi-
classical approximation for calculating such functions. WeappeNDIX A: THE CLASSICAL LIMIT OF QUANTUM
demonstrated the reduction from the exact quantum time corFiME CORRELATION FUNCTIONS
relation function to a nonuniform boundary-value semiclas- _ ) )
sical expression, then to a global-time initial-value semiclas- 10 reveal the relationship between classical and quantum
sical representation, and finally to the limit of electronically fime correlation functions, one can introduce into E2j13
nonadiabatic quantum nuclear dynamics. Much of this for- Set of collective coordinaté’s
mulation was accomplished with the help of a discrete ap-  g(t’)=q,(t’)—qy(t’),
proach. The resulting discrete initial-value representation of (A1)
the semiclassical approximation proves to be advantageous q(t')=[0g¢(t")+qy(t')]/2
for the _implementation o_f semiclassical dynamics_ since t_h?/vith corresponding collective momenta
global-time formula avoids the problems associated with
caustics and root searches. p(t")=ps(t") —pp(t’),
The studies presented in this paper are not only instruc-  — | , ,
tive and revealing, but they also serve as the formal basis for P(t')=[P:(t")+pu(t") ]2,
numerical algorithms. To achieve numerical efficiency inwhereq;(t’) andq,(t’) are the forward and backward clas-
such algorithms, a stationary-phase filter technique was insical paths, respectively, aqg(t’) andp,(t’) are the corre-
troduced into the method to effectively suppress the oscillasponding momenta. Note that in the context of the time cor-
tory region of the integrations. Several examples were testegblation function given by Eq(2.13 the initial collective
with the semiclassical method and compared with the exadtoordinates are given by(0)=(q,+0,)/2 and§(0)=g;,—d,
results obtained from basis-set calculations. These studiesd the final collective coordinates are givendgy) =g, and
clearly demonstrate the feasibility and accuracy of the algog(t)=0. Assuming that the path differencgt’) is small,
rithm. one can expand the action differena& in Eq. (2.13 to
With the results of the present work in hand, nontrivial linear order ing such that
applications of the semiclassical theory should be within — .
r(—f;ch. For example, the combined us;ey of the initial-value  2Sst™ Ss(01,0:1) = S(d2, 0 )= = Po" o, (A3)
semiclassical formalism and the stationary phase Montevherep,=ps(0) andgy=q¢(0). Furthermore, the difference
Carlo technique should allow us to calculate time correlatiorof the forward and backward stationary paths can be ignored
functions for realistic many-body systems, particularly forin the nonexponential factor of E¢2.13 and a Jacobian
one (or a few quantum particles in a classical-like environ- transformation can be performed, giving
ment. It will also be very interesting to apply this algorithm
when the semiclassical nuclear dynamics of such systems J dg;|det aqt/(gmflzj dpo (Ad)
must be treated nonadiabatically. For more complex quantum
systems in the condensed phase, the semiclassical methadhich changes the semiclassical boundary-value problem to
can also be used to accurately propagate an “importantan initial-value problem. Putting all the pieces together and
quantum subsysterte.g., solutg under the influence of an omitting the irrelevant indices, we have
approximate quantum environmental force calculated by 1
CMD*®-*L or from a quantum Gaussian bath. We have, in  (A(t)B(0))yw=cp f qu dpW(q,p; 8)
fact, developed a simple and flexible sché® generate h
fche guantum forces in the_latter_scenarlo which can rea_dlly b_e X A[qg(t)1B[qu(0)], (A5)
incorporated into the semiclassical methodology described in
this paper. These and other developments should greatly fithere dq(t) is the classical trajectory anw/(q,p) is the
cilitate our ongoing efforts to numerically simulate a wide Well-known Wigner distribution function, definedds

(A2)

range of complex quantum dynamical processes in con- 1 o N 3
densed matter. W(a.p:8)= f die P ¥ p(q+0/2,0—0/2;8). (A6)
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q;+ap ordering of operators simplifies the analysis, though the clas-
'(Q1—Q2)—,3V( 5 H (A7) sical limit does not depend on operator orderings.
Clearly, Eq.(A5) implies that a quasiclassical dynamics
the Wigner distribution functiotA6) reduces to the Boltz- ¢can be constructed based on the Wigner distribution function.
mann distribution function. The classical time correlationon the other hand, the fact that the Wigner distribution func-

function is then completely recovered, giving tion is not positive definite complicates the interpretation of
1 1 the Wigner distribution as a phase-space quantum distribu-
(A(t)B(O))d:Z—h—N f dqf dp tion function. However, one might adopt a coarse-grained

cl Wigner distribution, such as the Husimi distribution

xexd — BHq(p,q) JALgy(t) 1B[gy(0)] function,” as a quantum analogy to the classical Boltzmann

(A8) distribution function.

with H(p,q) andZ, being the classical Hamiltonian and par-

tition funct?on, respectively. Thus, _clas_sical dynamics _reSUItSAPPENDlx B: DISCRETE DERIVATION OF THE

from the high temperature approximation of the density ma-scop| EQUATION

trix and the linear expansion of the action difference of the

forward and backward stationary paths in the semiclassical For convenience, the derivation in this Appendix is pre-

expression for the time correlation function. The reduction tosented for one degree of freedom as the multidimensional
the classical limit starting from the initial-value approxima- generalization presents no special difficulties. To start, we
tion does not differ from the above derivation. The Weyl define the determinant of the following two matrices as

2— W, -1 0
-1 2— €2W, -1
Dy(P)=de : : : : (B1)
-1 2— eWp_, -1
0 -1 2—e®Wp_,
which appears in the discrete expression for the position—position propagator, and
2— €W, -1 0
-1 2— €’W, -1
D,(P)=de 3 - - (B2)
-1 2—e®Wp_, -1
0 -1 1—1e2Wp
|
which appears in the position—momentum propagator. Note jq+W(t)Jq:0 (B6)
that the determinant here is the product of the eigenvalues
and thereby does not imply the absolute value. It is then eas@”d
to observe the following iterative relations: qu:Jp (B7)
Dq(P+1)=(2—- eZWp)Dq(P)—Dq(P—l) (B3)  with the boundary conditions specified dg(0)=0 and

Jp(0)=1. Obviously, Eqs(B6) and(B7) are identical to the

Jacobi equations if W(t) is specified by mWt)
D,(P)=[1—(€2/2)Wp]Dq(P)—Dg(P—1). (B4)  =d*V[gg(1)]/dg? thereforeJ, andJ, are the usual Jacobi
variables, i.e.,J4(t) =dq(t)/dp, andJ,(t) =dp(t)/dp;.
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