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Semiclassical approximations for quantum time correlation functions are presented for both
electronically adiabatic and nonadiabatic dynamics along with discussions of the operator ordering
and the classical limit. With the combined use of the initial-value representation of the semiclassical
propagator, a discrete algorithm to evaluate the Jacobi matrices, semiclassical operator ordering
rules, and the stationary-phase filter technique, a practical algorithm is developed to calculate
quantum time correlation functions. This approach holds considerable promise for simulating the
quantum dynamics of realistic many-body systems. Some simple illustrative examples are used to
demonstrate the feasibility and accuracy of the algorithm. ©1996 American Institute of Physics.
@S0021-9606~96!02401-5#

I. INTRODUCTION

It is well-known from linear response theory that the
response of a system to a weak external force can be formu-
lated in terms of a time correlation function for the relevant
dynamical variable of the system~see, e.g., Refs. 1–3!.
Therefore, time correlation functions play a central role in
the study of dynamical processes, such as chemical reactions,
light scattering spectra, spectroscopic line shapes, transport
properties, etc. Classically, the evolution of the system obeys
the Newtonian equation of motion, which serves as the basis
for molecular dynamics~MD! simulations. Quantum me-
chanically, the probabilistic wave function propagates ac-
cording to the Schro¨dinger equation, which in principle can-
not be solved by means of deterministic trajectory dynamics.
Due to the importance of time correlation functions, much
effort has been devoted to the development of methods to
calculate them quantum mechanically; unfortunately, few
methods have been successful in applications to realistic
many-body quantum systems. In fact, it turns out that real-
time quantum propagation is a truly formidable numerical
problem because large sign fluctuations in the real-time
propagator can overwhelm the contribution from the physical
quantities of interest~see, e.g., Refs. 4–10!. Thus, to this day
the real-time propagation of many-body quantum systems
remains a daunting challenge.

There have been several attempts to calculate quantum
time correlation functions exactly using the Feynman path
integral formulation.4,6,11 For example, by virtue of the nu-
merical matrix multiplication method~NMM !,12 Thirumalai
and Berne were able to calculate the symmetrized dipole–
dipole time correlation function for a proton moving in a
one-dimensional bistable potential.13 While the NMM ap-
proach becomes prohibitive for many-dimensional systems,
it is also fruitless to directly apply Monte Carlo methods to
evaluate time correlation functions in such systems due to
large phase cancellations. To treat the generic problem of
performing many-dimensional averages of highly oscillatory
integrands—which are the origin of the difficulty in direct
Monte Carlo calculations of such functions—several station-

ary phase Monte Carlo~SPMC! methods have been
developed.14–20The implementation of these and other tech-
niques makes it possible in some cases to simulate the dy-
namics of simplified many-dimensional quantum systems.
For example, there have been a series of studies on electron
transfer dynamics as represented by the spin–boson model
and its multistate generalization.20–23 For system-bath-type
Hamiltonians having harmonic baths, quasiadiabatic propa-
gator path integral methods~QUAPI! have also been devel-
oped which propagate adiabatically a one-dimensional sys-
tem in which the harmonic bath has been incorporated
through an analytic influence functional.24–28 By virtue of
this algorithm and discrete variable representation~DVR!
quadrature, a detailed study of quantum rates for a double
well coupled to a harmonic bath was recently presented26

along with a comparison to approximate theories. Unfortu-
nately, all of the methods described above are either not di-
rectly applicable to ‘‘real’’ nonlinear many-body potentials or
become numerically intractable for anything but the short
time dynamics of such systems.29

One ‘‘exact’’ alternative to the direct real time quantum
dynamics approach is based on the fact that real-time corre-
lation functions can be formally related to their imaginary-
time counterparts through analytic continuation
(1/kBT5b→ i t /\).30,31 Thus, in principle, one can simulate
a quantum system with an equilibrium path integral Monte
Carlo method at several values of imaginary time and infer
the real-time quantities through the analytic continuation
~see, e.g., Refs. 31–34!. In practice, however, the analytic
continuation is rather sensitive to statistical fluctuations in
imaginary time data so this approach has suffered from nu-
merical instabilities. Gubernatis and co-workers have re-
cently introduced the maximum entropy method~MEM!
which appears to improve the stability of the analytic
continuation.7,35,36The MEM has proven to be reliable and
efficient in similar ill-posed inversion problems, so its appli-
cation in path integral simulations seems novel and promis-
ing. Using this technique, Gallicchio and Berne37 have, for
example, calculated the dipole absorption spectrum of an
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electron in fluid helium and found good agreement with
some previous analytic results. The implementation of this
and other versions of the MEM allows one to evaluate the
lower frequency portion of the absorption spectra with good
accuracy, but it probably requires further effort to determine
the high-frequency portion which is essential in describing
short-to-intermediate time quantum dynamics, e.g., photodis-
sociation processes, optical control experiments, quantum
tunneling, and charge transfer.

As an alternative to the numerical evaluation of the exact
quantum time propagation in many-body systems, one can
develop approximatemethods for quantum dynamics on
which stable and feasible numerical algorithms can be based
to compute time correlation functions. One such
approach38–41has been developed by the present authors and
is based on the dynamical properties of the centroid variable
in Feynman path integration.4,11 In this approach, called
‘‘centroid molecular dynamics’’~CMD!, a quasiclassical dy-
namics algorithm is employed to compute an approximation
to the Kubo-transformed quantum dynamical time correla-
tion function. There are now several encouraging results
from applications of CMD to a variety of nontrivial
systems.41–45 The simplicity and stability of this method
makes CMD a promising candidate for quantum dynamical
simulations in the condensed phase where other methods be-
come impractical.

In the present paper, however, a different and promising
approach for the calculation of approximate quantum dy-
namical time correlation functions will be developed based
on semiclassical arguments, some of which originate from
the earliest formulations of the ‘‘old’’ quantum theory. In-
deed, since those early days many attempts have been made
to elucidate and utilize the relationship between classical dy-
namics and its quantum counterpart. In time-independent
quantum mechanics, this is commonly known as the WKB
~Wentzel–Kramers–Brillouin! approximation for one-
dimensional problems, and it can be generalized to many-
dimensional problems as in classicalS-matrix theory46–48

~Miller–Marcus theory! and EBK ~Einstein–Brillouin–
Keller! quantization theory~see, e.g., Refs. 3 and 49!. On
the other hand,time-dependentsemiclassical mechanics were
first studied by Van Vleck50 and later extended by many
others.46–48,51–55

Although semiclassical approaches have found wide use
in various analytical theories, the development of semiclas-
sical quantum dynamics as a numerical algorithm has been
hindered by two major drawbacks: the root search problem
and the caustics problem. These two difficulties can be
avoided in some cases, e.g., in the context of Miller’s
S-matrix theory,46,48 with the help of an initial-value repre-
sentation in which an integration in phase space bypasses the
root search. Moreover, Campolieti and Brumer have ex-
tended the initial-value analysis to real-time propagation and
have thus suggested a semiclassical approach in which the
classical trajectories evolve according to the initial phase
space representation.56 Earlier, Miller and Heller proposed an
initial-value propagation of wave functions which introduces
integrations over initial and final positions and thus allows

for a change of variables to the initial phase space
variables.57–59

In the present paper, we show how the initial-value semi-
classical approach for computing the quantum propagator
can be used to calculate time correlation functions. To be
more specific, we have rederived the initial-value semiclas-
sical propagator from a discrete perspective and found an
alternative for evaluating the Jacobi matrices in the dis-
cretized formalism. Importantly, these new developments al-
low us to formulate the theory and a tractable numerical
algorithm for both adiabatic andnonadiabaticsemiclassical
time propagation of the nuclei in quantum systems. This,
along with an initial-value expression for the evaluation of
quantum operators, makes it possible to implement semiclas-
sical dynamics in the calculation of quantum dynamical time
correlation functions. The emphasis in the present paper is on
a formulation amenable to realistic many-body simulations.

The sections of this paper are organized as follows: In
Sec. II, the semiclassical approximation for quantum time
correlation functions is described and rederived in the adia-
batic dynamics limit from both the boundary-value and
initial-value perspectives, the latter being shown to be supe-
rior for our purposes. This derivation is next generalized in
Sec. III to the nonadiabatic limit. Then, in Sec. IV a
stationary-phase filter method is introduced to aid in the ac-
tual implementation of the initial-value semiclassical meth-
odology and some numerical examples are studied in Sec. V
to demonstrate the feasibility of the algorithm. Concluding
remarks are given in Sec. VI, while the Appendices contain
important supporting material.

II. SEMICLASSICAL THEORY: ADIABATIC DYNAMICS

A. Boundary-value formulation

1. Van Vleck formula for the propagator

It is well-known that semiclassical mechanics can be
largely understood as an asymptotic analysis of functional
integrals in terms of\21, which to second order is equivalent
to the stationary phase approximation.48 In this subsection,
the boundary-value Van Vleck formulation of time-
dependent semiclassical theory will be reviewed for com-
pleteness and as background material for subsequent devel-
opments. To start, the real-time propagator can be expressed
according to Feynman’s prescription of path integrals as4,11

G~q1 ,qt ;t !5^qtue2 iĤ t/\uq1&

5E Dq~ t8!exp$ iS@q~ t8!#/\%, ~2.1!

where the actionS@q(t8)#, given by

S@q~ t8!#5E
0

t

dt8L@ q̇~ t8!,q~ t8!#

5E
0

t

dt8$ 1
2q̇~ t8!•m•q̇~ t8!2V@q~ t8!#%, ~2.2!

is evaluated with the LagrangianL@q̇(t8),q(t8)# along the
pathq(t) subject to the boundary conditions
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q~0!5q1 , q~ t !5qt . ~2.3!

Following common notation, fonts with hats denote opera-
tors and bold fonts denote vectors or matrices; in particular,
the vectorsq5$q1 ,q2 ,...,qN% andp5$p1 ,p2 ,...,pN% repre-
sent, respectively,N-dimensional coordinates and their con-
jugate momenta in anN-degree-of-freedom system, whereas
m is the diagonal mass matrix. An application of the
stationary-phase approximation to Eq.~2.1! gives6

Gsc~q1 ,qt ;t !5(
st

S 1

2p i\ D N/2AdetS 2
]2Sst

]q1]qt
D

3exp~ iSst/\!, ~2.4!

where the summation is carried out over all possible station-
ary paths, andSst5Sst~q1,qt ;t! is the classical action associ-
ated with a given stationary path. The stationary phase con-
dition [dS/dq(t8)] st50 determines the classical trajectory,
thus leading to the Euler–Lagrange equations

d

dt8 S ]L

]q̇D2
]L

]q
5m•q̈1

]V

]q
50 ~2.5!

with the boundary conditions in Eq.~2.3!.
In the short time limit, the determinant in Eq.~2.4! is

positive and this semiclassical expression is exactly the
original Van Vleck short-time propagator.50 In general, the
determinant, termed theVan Vleck determinant, can be writ-
ten in a more useful form as

AdetS 2
]2Sst

]q1]qt
D5udet Jq~ t !u21/2 exp@2 ipn~ t !/2#,

~2.6!

wheren(t), known as the Maslov index,51 is the number of
sign changes of the determinant as the trajectory evolves in
time from 0 to t. The Jacobi matrices, defined as
Jq(t8)5]q(t8)/]p1 andJp(t8)5]p(t8)/]p1, are the solutions
of the coupled Jacobi equations,6,60 given by

J̇q~ t8!5m21
•Jp~ t8!,

~2.7!
J̇p~ t8!52K ~ t8!Jq~ t8!,

with the initial conditions

Jq~0!50,
~2.8!

Jp~0!5I ,

where I is the N-dimensional identity matrix andK ~t8!
is the time-dependent force constant matrix,
K (t8)5]2V(t8)/]q]q, evaluated along the stationary path
V(t8)5V@qst(t8)#. Clearly, the Jacobi equation in Eq.~2.7! is
the same as the classical equation of motion describing an
oscillator with a time-dependent force constant determined
by the stationary trajectory.

The nonuniform semiclassical formula in Eq.~2.4! is
valid as long as the prefactor in Eq.~2.6! remains finite. It
happens at certain times that two or more paths may coalesce
at a focal point, orcaustic, where

det Jq~ tc!5det ]q~ tc!/]p150, ~2.9!

resulting in the divergence of the nonuniform expression Eq.
~2.4!. In that case, one can resort to more accurate uniform
asymptotic approximations61 which, of course, assume a
more complicated form. Also, at a caustictc , the number of
negative eigenvalues of the matrixJq(tc), denoted by
sign@Jq(tc)#, will change depending on the order of the caus-
tic. By keeping track of the time evolution of sign@Jq(t)#,
one can express the Maslov index explicitly as

n~ t !5(
k

$sign@Jq~ tk
1!#2sign@Jq~ tk

2!#%, ~2.10!

wheretk denotes thekth caustic time as the stationary path
evolves in time from 0 tot. In fact, it can be seen from Eq.
~2.6! that the Maslov index is simply the number of negative
eigenvalues of the second-order derivative matrix, which
will be discussed later in the context of the initial-value rep-
resentation.

Apart from the difficulties associated with caustics, the
root search problem poses a formidable task in the numerical
implementation of Eq.~2.4!. Unlike an initial-value problem
where the trajectory follows a unique path in phase space,
the boundary-value problem requires one to search for a so-
lution to Eq. ~2.5! which satisfies both the initial and final
conditions in Eq.~2.3!, thus giving rise to the possibility of
multiple solutions. For many-body potentials there can exist
a very large number of such paths for longer time dynamics.
One also might obtain imaginary paths in the case of quan-
tum tunneling. The numerical difficulty associated with the
search for these solutions increases drastically with the di-
mensionality of the system.

2. Time correlation functions

As stated earlier, many physical quantities of interest can
be related to time correlation functions. In their most general
form, these functions can be expressed as

^Â~ t !B̂~0!&5Z21 Tr@e2bĤeiĤ t/\Âe2 iĤ t/\B̂#

5Z21E dq1E dq2E dqtE dq18E dqt8

3r~q1 ,q2 ;b!

3^qtue2 iĤ t/\uq2&* ^qt8ue
2 iĤ t/\uq18&

3^qtuÂuqt8&^q18uB̂uq1&, ~2.11!

whereZ is the partition function,Z5Tr exp(2bĤ), andr is
the canonical density matrix at temperatureb51/kBT, i.e.,

r(q1 ,q2 ;b) 5 ^q1ue2bĤuq2&. While Eq. ~2.11! is a general
expression, for the present discussion we will specialize it to
the case in which the operatorsÂ and B̂ are dependent on
position only, giving
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^Â~ t !B̂~0!&5Z21E dq1E dq2E dqtr~q1 ,q2 ;b!

3^qtue2 iĤ t/\uq2&* ^qtue2 iĤ t/\uq1&A~qt!B~q1!.

~2.12!

The case of general operators depending on both position
and momenta will be discussed in Sec. II B within the con-
text of the initial-value formulation. By substituting the
semiclassical formula in Eq.~2.4! for the propagators into
the above expression, one obtains

^Â~ t !B̂~0!&sc

5Z21E dq1E dq2E dqtA~qt!B~q1!r~q2 ,q1 ;b!

3
1

hN (
st

S det ]qt
]p1

det
]qt
]p2

D 21/2

exp~ iDSst/\!,

~2.13!

where the subscript ‘‘st’’ denotes a summation over both
the forward and backward stationary paths and
DSst5Sst~q1,qt ;t)2Sst~q2,qt ;t!. In principle, time correla-
tion functions can be evaluated based on Eq.~2.13!, but such
a calculation would be fully vulnerable to the caustic and
root search problems described previously. Therefore, the
above expression is primarily of formal interest.~It is useful,
for example, when one considers the classical limit, cf. Ap-
pendix A.! A much more useful approach is based on the
initial-value formulation of semiclassical dynamics and this
will now be discussed.

B. Initial-value formulation

1. Propagator

The initial-value representation of the semiclassical
propagator is a recasting of the semiclassical boundary-value
problem in terms of the initial position and an integral over
the initial momentum. Since this approach is formally
equivalent to the Van Vleck form, their evaluation is for-
mally equal. However, the initial-value representation is nu-
merically superior since the stationary phase trajectories in
the initial-value approach are determined from initial mo-
menta and coordinates. The troublesome boundary-value
problem thus becomes an initial-value problem. Moreover,
the Van Vleck determinant, which vanishes at the caustics,
appears in the numerator, instead of the denominator, of the
semiclassical expression. The initial-value representation is a
global-time asymptotic semiclassical approximation which is
reducible to the Van Vleck formula by a stationary phase
integration.

Recently, Campolieti and Brumer56 presented an in-
depth study of the initial-value formalism, with an emphasis
on a derivation of the Maslov indices and canonical transfor-
mations among alternative phase-space representations.
Their analysis follows a simple procedure of concatenating
short-time propagators by sequential stationary-phase inte-
grations. In Sec. II B 2, we rederive the initial-value propa-

gator from a discretized perspective which leads to an effi-
cient and transparent alternative for evaluating the Jacobi
matrices. These new developments allow us to formulate an
initial-value semiclassical algorithm for the quantum propa-
gator in both the adiabatic and nonadiabatic limits. The cen-
tral result of these efforts in both cases is an initial-value
expression for the coordinate representation of the propaga-
tor, i.e.,56

Gisc~q1 ,qt ;t !5
1

hN E dp1udet Jp~ t !u1/2

3exp@ ia~q1 ,p1 ,qt ;t !/\2 ipm~ t !/2#,

~2.14!

where the phase is a canonical transformation of the classical
actionS, i.e.,

a~q1 ,p1 ,qt ;t !5Sst@q1 ,q~ t !;t#1p~ t !•@qt2q~ t !#,
~2.15!

and the indexm(t) is related to the Maslov index by

m~ t !5n~ t !1sign@Jp
T~ t !Jq~ t !#. ~2.16!

Here, the Jacobi matricesJp(t) and Jq(t) are solved from
Eq. ~2.7! or by the discrete approach derived in Sec. II B 2.
The stationary-phase condition determines the classical tra-
jectory from the usual initial conditions~q1,p1!, namely,

q~ t !5q~q1 ,p1 ;t !,
~2.17!p~ t !5p~q1 ,p1 ;t !,

which is an initial-value problem rather than a boundary-
value problem as in Eq.~2.3!. Also one sees from Eq.~2.14!
that a vanishing determinant, detJp(t), does not lead to a
divergent prefactor at the caustics.

Before proceeding to Sec. II B 2, we note that some care
is in order when evaluating the initial-value propagator ex-
plicitly. Unlike the nonuniform asymptotic expression in Eq.
~2.4!, the initial-value expression Eq.~2.14! is nonsymmetric
with respect to the exchange of the coordinatesq1 and qt ,
thus contradicting the symmetry of the Green’s function for a
real time-independent Hamiltonian. To remedy this, one can
construct a symmetrized propagator by inserting a complete
coordinate basis set at the half-time, i.e.,

G~q1 ,qt ;t !5E dq3^qtue2 iĤ t/2\uq3&^q3ue2 iĤ t/2\uq1&

5E dq3G~qt ,q3 ;t/2!G~q1 ,q3 ;t/2!, ~2.18!

where the symmetry property of the Green’s function for
time-independent Hamiltonians has been used. In the evalu-
ation of time correlation functions, this symmetrization is not
necessary.

2. A new derivation of the propagator

The approach reviewed in Sec. II B 1 involved solving
the Jacobi matrices from the Jacobi equation which, in the
case of nonadiabatic dynamics described in Sec. III below,
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becomes a complex integro-differential equation. To avoid
this difficulty, we set out to find an alternative to evaluate the
Jacobi matrices and have thereby found it necessary to derive
the initial-value expression from a new perspective. Straight-
forward and self-contained, this derivation leads to a dis-
cretized expression for the Jacobi matrices and a simple in-
terpretation of the Maslov-like index. These general
expressions are applicable to both adiabatic and nonadiabatic
dynamics, and are therefore in some sense more general than
the original expressions.

To start, the real-time propagator is rewritten as

G~q0 ,qt ;t !5^qtue2 iĤ t/\uq0&

5E dpt^qtupt&^ptue2 iĤ t/\uq0&, ~2.19!

where a complete set of momentum states has been inserted.
It is then essential to evaluate the position–momentum
propagator from the initial coordinateq0 to the final momen-
tum pt , which differs from the usual position–position
propagatorG~q0,qt ;t! only in the terminal state. The
position–momentum propagator in the discretized path inte-
gral form is given as

^ptue2 iĤ t/\uq0&5
1

hN/2 )
i51

P S m

2p i\e D N/2E dqi exp~ ifP /\!,

~2.20!

wherefP is a discretized canonical transformation of the
action, given by

fP5(
i51

P F 12e
~qi2qi21!•m•~qi2qi21!

2eSV~qi !1V~qi21!

2 D G2pt•qP . ~2.21!

Here,P is the discretization number,e is the discrete time
incremente5t/P, andm is, as before, the diagonal particle
mass matrix.

The semiclassical approximation is the functional appli-
cation of the stationary-phase approximation. The stationary-
phase condition@]f/]qi#st50 in the present case determines
thediscretizedstationary path foriÞP as

m•
~qi111qi2122qi !

e2
1¹Vi50 ~2.22!

and, for i5P, as

p5
m

e
•~qP2qP21!2

e

2
¹VP . ~2.23!

It is easy to recognize that in the continuous limit Eq.~2.22!
is equivalent to the classical equation of motion, that is

m•q̈~ t8!1¹V@q~ t8!#50 ~2.24!

and Eq.~2.23! imposes the terminal boundary condition

pt5p~ t !5p~q0 ,p0 ,t !. ~2.25!

Next, the quantum fluctuations are evaluated by a
second-order functional derivative, giving

]2fst

]qi]qj
5
m

e
~2d i , j2d i , j112d i , j21!2d i , jeK i , j , ~2.26!

except fori5 j5P, which is given by

]2fst

]qP]qP
5
m

e
2

e

2
KP,P , ~2.27!

where K is the time-dependent force constant matrix
K i , j5]2V/]qi]qj evaluated along the stationary path.

The determinant of the matrix@]2f/]qi]qj # in the largeP
limit can now be defined as

detDp~ t !5 lim
P→`

detP e m21
]2fst

]qi]qj
, ~2.28!

where detP refers to the discretization of time intoP slices
but not to the system dimensionalityN. This determinant is
the product of the eigenvalues and hence the phasem(t) of
Dp(t) is determined by the number of negative eigenvalues
of the matrix, i.e.,

detDp~ t !5udetDp~ t !uexp@ ipm~ t !#. ~2.29!

Thereby, the semiclassical limit of the propagator in Eq.
~2.20! can be explicitly written as

^ptue2 iĤ t/\uq0&sc5
1

hNAudetDp~ t !u

3exp@ ifst~ t !/\2 ipm~ t !/2#, ~2.30!

wherefst(t)5Sst@q1,q(t);t]2p(t)•q(t). Thus, the propaga-
tor in Eq. ~2.19! can be rewritten as

Gisc~q0 ,qt ;t !5
1

hN E dp0udet Jp~ t !u
1

AudetDp~ t !u

3exp$ i @fst~ t !1p~ t !•qt#/\2 ipm~ t !/2%,

~2.31!

where a change of variables from the final to the initial mo-
menta has been carried out which introduces the Jacobi fac-
tor Jp(t). It is proven in Appendix B thatDp(t) is equal to
the Jacobi matrix, i.e.,

Dp~ t !5Jp~ t !. ~2.32!

This result allows us to reach the final expression of the
initial-value representation given by Eq.~2.14! with p1 in
that expression replaced byp0.

3. Time correlation functions

By substituting Eq.~2.14! into Eq. ~2.11!, it is straight-
forward to obtain an initial-value semiclassical expression
for general time correlation functions, i.e.,
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^Â~ t !B̂~0!& isc5
1

Z

1

h2N E dq1E dq2E dqtE dq18E dqt8

3E dp1E dp2r~q1 ,q2 ;b!

3g~q18 ,p1 ,qt8 ;t !g* ~q2 ,p2 ,qt ;t !

3^qtuÂuqt8&^q18uB̂uq1&, ~2.33!

whereg is the integrand in the initial-value propagator in Eq.
~2.14!, i.e.,

g~q1 ,p1 ,qt ;t !5udet Jp~ t !u1/2

3exp@ ia~q1 ,p1 ,qt ;t !/\2 ipm~ t !/2#.

~2.34!

In this case,Â andB̂ are general operators which can depend
on both position and momentum. If one knows the position
matrix elements of these operators, and if they are ‘‘simple’’
products of position and momentum, then one can readily
express the above correlation function in a more explicit
form. For example, ifÂ and B̂ depend only on the position
operator, then Eq.~2.33! simplifies to read

^Â~ t !B̂~0!& isc5
1

Z

1

h2N E dq1E dq2E dqtE dp1E dp2

3r~q1 ,q2 ;b!g~q1 ,p1 ,qt ;t !

3g* ~q2 ,p2 ,qt ;t !A~qt!B~q1!. ~2.35!

In many cases of interest, however, the operatorsÂ and
B̂ are complicated functions of positions and momenta. In
such cases, it is better to concentrate one’s efforts on the time
correlation function written in the form

^Â~ t !B̂~0!&5
1

Z E dq0E dq1E dq2r~q0 ,q2 ;b!

3^q2uÂ~ t !uq1&^q1uB̂~0!uq0&, ~2.36!

where Â(t) and B̂(0) are Heisenberg operators. The focus
therefore shifts to deriving a semiclassical initial-value ex-
pression for the matrix element^q2uÂ(t)uq1&. Through the
Weyl correspondence, an operator can be expressed as62,63

^q28uÂ~ q̂,p̂!uq18&5
1

hN E dp8AW@~q181q28!/2,p8#

3eip8•~q182q28!/\, ~2.37!

whereAW~q,p! is the classical symbol corresponding to the
quantum operatorÂ~q̂,p̂!. By combining Eq.~2.37! and the
initial-value expression in Eq.~2.14!, one obtains

^q2ueiĤ t/\Â~ q̂,p̂!e2 iĤ t/\uq1& isc

5
1

hN E dq18E dq28E dp8AW@~q181q28!/2,p8#

3eip8•~q182q28!/\^q18ue
2 iĤ t/\uq1& isĉ q28ue

2 iĤ t/\uq2& isc* .

~2.38!

We then make a change of variables toq̃ 5 (q18 2 q28) andqt
5 (q18 1 q28)/2, integrate over the first variable resulting in a
delta function of momentum which is also integrated over,
and finally arrive at the initial-value semiclassical represen-
tation of the Heisenberg operator, i.e.,

^q2ueiĤ t/\Â~ q̂,p̂!e2 iĤ t/\uq1& isc

5
1

h2N E dqtE dp1E dp2AW~qt,@p1~ t !1p2~ t !#/2!

3g~q1 ,p1 ,qt ;t !g~q2 ,p2 ,qt ;t !* , ~2.39!

where the classical momentum in the symbolAW~q,p! takes
the average value at the end of the trajectories which are
used in the computation ofg~q1,p1,qt ;t! andg~q2,p2,qt ;t!* .
Thus, momentum symbols in the Weyl ordering of Heisen-
berg operators are essentially the symmetrized final momen-
tum variables from the initial-value semiclassical representa-
tion. It can be shown that Eq.~2.37! is recovered from the
t→01 of Eq. ~2.39!. With this formulation of semiclassical
Heisenberg operators in hand, the time correlation function
in Eq. ~2.36! can be written in the initial-value representation
as

^Â~ t !B̂~0!& isc

5
1

Z

1

h2N E dq0E dq1E dq2E dqtE dp1

3E dp2r~q0 ,q2 ;b!AW~qt,@p1~ t !1p2~ t !#/2!

3^q1uB̂~0!uq0&g~q1 ,p1 ,qt ;t !g* ~q2 ,p2 ,qt ;t !, ~2.40!

where the zero-time matrix element^q1uB̂(0)uq0& has been
left in a general form.

The form of Eq.~2.40! also suggests a series of approxi-
mations in which64

AW~q,p!5A0~q,p!1 (
n51

`
~ i\!n

n!
An~q,p!, ~2.41!

whereA0~q,p!5Acl~q,p! is the classical function of the dy-
namical variablesq andp. In particular, ifAW~q,p! is a poly-
nomial such a truncation will be exact for sufficiently large,
but finite, values ofn. In general, such a truncation is not
strictly equivalent to the semiclassical approximation be-
cause the error is in the preexponential part. Nonetheless, the
truncation is tantamount to that used by Wigner65 in his for-
mulation of the leading quantum correction to the classical
partition function.

III. SEMICLASSICAL THEORY: NONADIABATIC
DYNAMICS

Many advances have taken place in the field of nonadia-
batic dynamics simulation.66–71The theoretical basis for sev-
eral algorithms is the Pechukas theory of nonadiabatic colli-
sions based on the stationary phase approximation to
Feynman path integrals.53,54As far as the nuclear motion is
concerned, classical dynamics has been assumed in most of
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the nonadiabatic dynamics algorithms based on the Pechukas
formulation. Clearly, neglect of the quantum nature of the
nuclear dynamics is inadequate for treating light nuclei such
as protons. Therefore, the combination of the initial-value
semiclassical approximation and nonadiabatic dynamics will
represent a more accurate description of such systems and
this is the focus of the present section.

Consider the dynamics of nuclei on a potential resulting
from multiple electronic diabatic surfaces. One then needs to
extend adiabatic dynamics to nonadiabatic dynamics to allow
for the possibility of transitions between the different sur-
faces. To put the formalism in the most general context, we
consider the Hamiltonian of a many-body, multilevel system
written as

H5H0~ q̇!1Hd~q!, ~3.1!

whereq, as before, is the collection ofN nuclear degrees of
freedom of the system of interest, andH05q̇(t8)•m•q̇(t8)/2
is the kinetic energy term for the nuclei. The HamiltonianHd

can be explicitly expressed in terms of the elementshii ~for
the i th diabatic surface! andhi j ~for the coupling between the
i th and j th diabatic surfaces!, i.e.,

Hd~q!5(
i
hii1(

i
(
j. i

hi j . ~3.2!

Here, the elements are defined as

hii5u i &Vii ~q!^ i u, ~3.3!

and

hi j5u i &Vi j ~q!^ j u1u j &Vi j
† ~q!^ i u, ~3.4!

where the off-diagonal coupling elements satisfy the Hermit-
ian relationVi j 5 Vji* . The potential energy termsVii in the
elementshii describe the diabatic surfaces, so the above for-
mulation of the problem is completely general.

For the Hamiltonian in Eq.~3.1!, the matrix element of
the nuclear time propagator in the diabatic basis reads

Gmn~q0 ,qt ;t !5E Dq~ t8!exp$ iS0@q~ t8!#/\%Tmn@q~ t8!#,

~3.5!

whereS0@q(t8)# is the action functional associated with the
kinetic energy termH0 andTmn is the overlap between the
initial and final diabatic states. Explicitly, the time evolution
operator for the diabatic Hamiltonian evolves according to
the time-dependent Schro¨dinger equation

i\
]u~ t8!

]t8
5Hd@q~ t8!#u~ t8! ~3.6!

with the initial conditionu(0)51. The transition amplitudes
are thus given by

Tmn@q~ t8!#5^muu~ t8!un& ~3.7!

which is a functional of the nuclear pathq(t8).
To facilitate the subsequent analysis, the quantum aver-

age over the diabatic basis is introduced as

^ f̂ ~ t8!&d5
^muu~ t,t8! f̂ ~ t8!u~ t8,0!un&

^muu~ t,t8!u~ t8,0!un&
, ~3.8!

where the denominator is independent of the variablet8, and
f̂ (t8) is in general an operator. This quantum average is car-
ried out by assuming a particular nuclear pathq(t8) and is
thus a functional of the nuclear paths. Equations~3.1!–~3.8!
represent the exact formulation of the nonadiabatic quantum
dynamics for a given nuclear pathq~t8!.

Following the Pechukas analysis, we apply the stationary
phase approximation to Eq.~3.5! and thus obtain the equa-
tion of motion for the nuclear coordinates53,54

m•q̈~ t8!52 K ]Hd@q~ t8!#

]q~ t8! L
d

, ~3.9!

which is to be solved together with Eqs.~3.6!–~3.8! to obtain
the nonadiabatic stationary solution~s!. Clearly, the coupling
between the diabatic state propagation and the stationary tra-
jectory imposes the self-consistency condition for the solu-
tion of the nonadiabatic trajectories.

With the stationary solutions in hand, the semiclassical
expression for the propagation is given as

^m,qtue2 iĤ t/\un,q1& isc5
1

hN E dp1udet Jp~ t !u1/2

3exp@ ia~ t !/\2 ipm~ t !/2#

~3.10!

which is the same as the adiabatic semiclassical expression
in Eq. ~2.14! except that theSst is now defined as

Smn,st~q1 ,qt ;t !5S0,st~q1 ,qt ;t !2 i\ ln Tmn@qst~ t !#,
~3.11!

so that fst(t)5Smn,st2p(t)•q(t) and a(t)5Smn,st1p(t)
•@qt2q(t)#. The prefactorJp(t) obeys the Jacobi equation
which can be obtained from taking the partial derivative of
Eq. ~3.9! with respect to the initial valuesp0 or q0, giving the
Jacobi matrix equation

m• J̈q~ t8!1^¹8•¹8Hd&dJq~ t8!

2
i

\ E
0

t

dt9@^~¹8Hd!u~ t8,t9!~¹9Hd!&d2^¹8Hd&d

•^¹9Hd&d]Jq~ t9!50, ~3.12!

where¹8[]/]q(t8), ¹9[]/]q(t9), andm•J̇q5Jp . The latter
equations are the nonadiabatic analog to the adiabatic Jacobi
equations of Eqs.~B6! and ~B7! ~cf. Appendix B!.

Solving the integral-differential equation in Eq.~3.12! is
a formidable task. In addition, the fact that the Jacobi matri-
ces are generally complex introduces ambiguities in defining
the Maslov indexm(t). To circumvent these difficulties, we
resort to a discretized expression for the Jacobi matrix which
is equivalent to solving the Jacobi equation. To be more ex-
plicit, the Jacobi determinant, detJp(t), can be evaluated in a
discretized format as in the previous section, giving in the
nonadiabatic case
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]2fst

]qi]qj
5
m

e
~2d i , j2d i , j112d i , j21!

2ed i , j K ]2Hd@q~ t8!#

]qi
2 L

d

1 i\e2Ci , j , ~3.13!

except fori5 j5P, which is given by

]2fst

]qP]qP
5
m

e
2

e

2 K ]2Hd@q~ t8!#

]qP
2 L

d

1 i\
e2

2
CP,P .

~3.14!

The quantum fluctuation correlation matrixCi , j here is given
by

Ci , j5 K ]Hd@q~ t8!#

]qi
u~ t i8 ,t j8!

]Hd@q~ t8!#

]qj
L
d

2 K ]Hd@q~ t8!#

]qi
L
d
K ]Hd@q~ t8!#

]qj
L
d

. ~3.15!

The dimensionality implicit in the above equations is such
that]2fst/]qi]qj is a matrix of dimensionN3P. After taking
the limit P→`, we obtain the explicit expression for the
prefactor

det Jp~ t !5 lim
P→`

detP em21
]2fst

]qi]qj
. ~3.16!

Here, the determinant denotes the product of eigenvalues
which are complex and defined counterclockwise in the com-
plex plane. Therefore, the Maslov-like indexm(t) equals the
summation of the phase angles of the complex eigenvalues
of the discretized second-order derivative matrix in Eqs.
~3.13! and ~3.14! in the largeP limit. The above derivation
represents a different approach for calculating the Jacobi ma-
trices and the Maslov-like index without solving the Jacobi
equations. It is applicable in both the adiabatic and nonadia-
batic limits.

IV. NUMERICAL ALGORITHMS

Though the initial-value semiclassical expression in Eq.
~2.14! represents a significant simplification of the exact path
integral, the integrandg of Eq. ~2.34! as a function of the
initial momenta is oscillatory and thus does not render itself
to simple integration schemes. Since the usual Monte Carlo
method is not applicable to integrate such complex expo-
nents, one has to introduce a positive definite weight func-
tion such that the integration domains which dominate the
integral will be sampled preferentially over those which
barely contribute because of phase cancellations. Indeed,
such an approach, termedstationary phase Monte Carlo, has
been proposed and applied in some quantum dynamical path
integral simulations.14–16,19Here, we will describe a simpli-
fied version of the stationary phase method as it applies to
the present semiclassical formalism.

In general, consider a one-dimensional integral of the
form

I ~\!5E
2`

`

dx eif~x!/\, ~4.1!

which is a generic integral having a complex exponent. If\
is small, the integral is dominated by regions where the
phasef(x) is stationary, i.e., wheref8(x)50. In the non-
stationary regions, the complex exponential is highly oscil-
latory, thus effectively canceling the contribution from those
regions. Therefore, it is advantageous to introduce a weight
function which suppresses the oscillatory integrand and thus
acts effectively as afilter. A simple example is a Gaussian
filter, defined as

We~x!5exp$2e@f8~x!#2%, ~4.2!

wheree is the filter parameter. Then, the integration in Eq.
~4.1! becomes

I e~\!5E
2`

`

dx eif~x!/\We~x!, ~4.3!

and, for example, an expectation value is approximated as

^A&5
*2`

` dx A~x!eif~x!/\

*2`
` dx eif~x!/\

.
*2`

` dx A~x!We~x!eif~x!/\

*2`
` dx We~x!eif~x!/\ . ~4.4!

A general form of filters and the relationship between the
filtered integral in Eq.~4.3! and the exact one in Eq.~4.1!
have been analyzed in detail by others.14–16,19 It should be
noted that there is some flexibility in the definition of the
preexponential factor of the filter function depending on the
final numerical target, but these factors will cancel in the
calculation of expectation values or time correlation func-
tions as outlined below.

Although approximations to the exact integrals, Eqs.
~4.3! and ~4.4! converge much faster than the original inte-
grals. If the parametere is small, the filtered integral is closer
to the exact one but takes much longer to converge; in the
case ofe→0, the exact integral is recovered. If the parameter
e is large, the filtered integral is localized near stationary
points and thus ignores fluctuations away from those points.
A proper choice of the filter parameter is indeed crucial for
carrying out an accurate and efficient calculation. Given a
required level of convergence, the filtered integral exhibits
poor statistics fore,emin , but it may deviate substantially
from the exact value fore.emax. Thus, the optimal choice of
e is located in the intermediate region,emin,e,emax, where
the filtered integral becomes both stable and accurate.

Following the above discussion of the stationary-phase
filter method, it is now specialized to treat the integrations in
the initial-value representation of semiclassical time correla-
tion functions explicit in Eq.~2.33!. Since the general term
a~q1,p1,qt ;t! defined by Eq.~2.15! is the phase, the filtered
propagator is given by

^q2ue2 iĤ t/\uq1& isc5
1

h E dp1g~q1 ,p1 ,q2 ;t !We~p1!,

~4.5!
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where the filter can be defined as

We,p1
5exp@2ep~]a/]p1!

2#

5exp~2ep$Jp~ t !@qt2q~ t !#%2! ~4.6!

and a one-dimensional notation has been adopted here for

notational simplicity. It is also straightforward to write down
the filtered expression for the semiclassical time correlation
function. For example, the case of position-dependent opera-
tors is given from Eq.~2.35! by

^Â~ t !B̂~0!& isc5
* dq1* dq2* dqt* dp1* dp2r~q1 ,q2 ;b!Kg~ t !We,p1

We,p2
We,qt

A~qt!B~q1!

* dq1* dq2* dqt* dp1* dp2r~q1 ,q2 ;b!Kg~ t !We,p1
We,p2

We,qt

, ~4.7!

whereKg(t)5g(q1 ,p1 ,qt ;t)* g(q2 ,p2 ,qt ;t), and a filter is
also applied here to theqt integration, i.e.,

We,qt
5exp$2eq@]~a12a2!/]qt#

2%

5exp$2eq@p1~ t !2p2~ t !#
2%. ~4.8!

In Eq. ~4.7!, the quantum density matrix element
r(q1 ,q2 ;b) also provides a natural ‘‘filter’’ for the integra-
tion over the variablesq1 andq2 . The functionsA(qt) and
B(q1) in Eq. ~4.7! may also aid in the filtering, depending on
their form. Note that the denominator of Eq.~4.7! equals the
partition functionZ, but it has been written so that the over-
all equation is amenable to a Monte Carlo algorithm. It
should also noted that the trajectoriesq(t) in Eq. ~4.6! which
contribute toWe,p1

andWe,p2
in Eq. ~4.7! are different~i.e.,

they have different initial momenta! and therefore must be
treated as such.

V. NUMERICAL EXAMPLES

A. Propagator for a solvable potential

To demonstrate the feasibility and accuracy of the initial-
value semiclassical approximation and the stationary-phase
filter technique, we first present a numerical study of a solv-
able potential, given by

V~q!5
1

q2
~5.1!

with m51.0 and\51.0. The real-time propagator of this
potential is given in a closed form by6

G~q1 ,qt ;t !5~mAq1qt/ i\t !exp@ im~q1
21qt

2!/2\t#

3I 3/2~mq1qt / i\t !, ~5.2!

whereI n is the modified Bessel function of indexn53/2. In
Fig. 1 is plotted the unfiltered integrandg of Eq. ~2.34!, the
filtered integrand in Eq.~4.5!, and the filter in Eq.~4.6! as a
function of the initial momentum forq153, qt54, t53.
The filter parameter in Eq.~4.6! was taken asep50.01. It
can be seen clearly from Fig. 1 that the integrand is highly
oscillatory except near the origin. The filter selects two sta-
tionary regions, one to the left of the origin, the other to the

right of the origin, which indeed correspond to two possible
classical trajectories, the direct path and the indirect path
bounced from the repulsive wall.

The squared amplitude of the time propagator for the
potential in Eq.~5.1! with the same parameters as in Fig. 1 is
plotted as a function of time in Fig. 2, where the exact and
semiclassical results are represented by a solid and dashed
lines, respectively. The initial momentum was integrated on a
200-point grid from210 to 10 with a filter parameter of
ep50.01. Despite the small discrepancies due to the nature
of the semiclassical approximation, good agreement with the
exact result is achieved.

B. Anharmonic quantum oscillator: Position
correlation function

In this subsection, the initial-value semiclassical method
is used to compute the position correlation function for an
anharmonic potential, defined as

V~q!5 1
2q

21 1
4q

4 ~5.3!

with m51.0, \51.0 andb51.0. The position correlation
function was computed with filters on the momentum inte-
grations having a value ofep50.1. The thermal density ma-
trix was calculated by the numerical multiplication method
~NMM !,12 and the coordinates and momenta were integrated
on grids. The numerically exact correlation function was ob-
tained from a harmonic oscillator basis set calculation. In
Fig. 3, the real parts of the exact and semiclassical time
correlation functions are plotted as functions of time. The
semiclassical approximation is more accurate for time corre-
lation functions than for propagators, probably because cor-
relation functions result from a thermal average of forward
and backward real-time propagators and are thereby less sen-
sitive to errors introduced by the semiclassical approxima-
tion. In general, the agreement between the exact and semi-
classical results is excellent for this system.

C. Double well: Reactive flux

As a final example, the flux–flux correlation function
was calculated for a double well potential, defined as

V~q!52 1
2q

21 1
4q

4 ~5.4!
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with m51.0,b51.0, and\51.0. The quantum dynamics of
a double well exhibits coherence at low temperature, thermal
activation at high temperature, and assumes an exponential
decay in the presence of dissipation. Miller and co-workers
have shown that thermal rate constants can be obtained from
the time integration of the flux–flux correlation function, de-
fined as72

CFF~ t !5Tr~ F̂e2bĤ/22 iĤ t/\F̂e2bĤ/21 iĤ t/\!, ~5.5!

where the flux operator is given by

F̂5
1

2m
@ p̂d~q2qb!1d~q2qb! p̂# ~5.6!

with qb defined as the position of the dividing surface. To be
more explicit, we define a complex time propagator as

G̃~q1 ,q2 ;b,t !5^q2ue2bĤ/22 iĤ t/\uq1& ~5.7!

such that the flux–flux correlation function can be expressed
as72

CFF~ t !52 lim
q→qb

1

2m2 @ u p̂G̃~qb ,q;b,t !u2

1Re p̂p̂bG̃~qb ,q;b,t !G̃* ~qb ,q;b,t !#, ~5.8!

wherep̂b is the momentum operator acting onqb . Although
the flux–flux correlation function depends upon the choice of
the dividing surface, the rate constant is a physical quantity
independent ofqb . For convenience, we chooseqb50 so
that the first term in Eq.~5.8! vanishes for a symmetric bar-
rier. In Fig. 4, the semiclassical value ofCFF(t) is plotted for

FIG. 1. The unfiltered integrandg in the initial-value semiclassical approxi-
mation~dashed line!, the filtered integrand in Eq.~4.5! ~solid line!, and the
filter function ~bold line! plotted as functions of the initial momentum for
the 1/q2 potential withq153, q254, andt53.

FIG. 2. A plot of uGisc(3,4;t)u2 vs time~dashed line! for the 1/q2 potential.
The exact result is shown for comparison by the solid line.

FIG. 3. The real part of the initial-value semiclassical position correlation
function ~solid diamonds! for the potential in Eq.~5.3! at a temperature
b51.0. The numerically exact result obtained from a basis set calculation is
shown by the solid line.

FIG. 4. The initial-value semiclassical flux–flux correlation function~solid
diamonds! for the potential in Eq.~5.4! plotted along with the numerically
exact result~solid line! obtained from a basis set calculation.
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the double well and compared with the exact result obtained
from a basis set calculation. Again, excellent agreement is
obtained.

VI. CONCLUDING REMARKS

In this paper, we have discussed the semiclassical formu-
lation of quantum dynamical time correlation functions and
have also investigated the numerical feasibility of the semi-
classical approximation for calculating such functions. We
demonstrated the reduction from the exact quantum time cor-
relation function to a nonuniform boundary-value semiclas-
sical expression, then to a global-time initial-value semiclas-
sical representation, and finally to the limit of electronically
nonadiabatic quantum nuclear dynamics. Much of this for-
mulation was accomplished with the help of a discrete ap-
proach. The resulting discrete initial-value representation of
the semiclassical approximation proves to be advantageous
for the implementation of semiclassical dynamics since the
global-time formula avoids the problems associated with
caustics and root searches.

The studies presented in this paper are not only instruc-
tive and revealing, but they also serve as the formal basis for
numerical algorithms. To achieve numerical efficiency in
such algorithms, a stationary-phase filter technique was in-
troduced into the method to effectively suppress the oscilla-
tory region of the integrations. Several examples were tested
with the semiclassical method and compared with the exact
results obtained from basis-set calculations. These studies
clearly demonstrate the feasibility and accuracy of the algo-
rithm.

With the results of the present work in hand, nontrivial
applications of the semiclassical theory should be within
reach. For example, the combined use of the initial-value
semiclassical formalism and the stationary phase Monte
Carlo technique should allow us to calculate time correlation
functions for realistic many-body systems, particularly for
one ~or a few! quantum particles in a classical-like environ-
ment. It will also be very interesting to apply this algorithm
when the semiclassical nuclear dynamics of such systems
must be treated nonadiabatically. For more complex quantum
systems in the condensed phase, the semiclassical method
can also be used to accurately propagate an ‘‘important’’
quantum subsystem~e.g., solute! under the influence of an
approximate quantum environmental force calculated by
CMD38–41 or from a quantum Gaussian bath. We have, in
fact, developed a simple and flexible scheme73 to generate
the quantum forces in the latter scenario which can readily be
incorporated into the semiclassical methodology described in
this paper. These and other developments should greatly fa-
cilitate our ongoing efforts to numerically simulate a wide
range of complex quantum dynamical processes in con-
densed matter.
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APPENDIX A: THE CLASSICAL LIMIT OF QUANTUM
TIME CORRELATION FUNCTIONS

To reveal the relationship between classical and quantum
time correlation functions, one can introduce into Eq.~2.13!
a set of collective coordinates74

q̃~ t8!5qf~ t8!2qb~ t8!,
~A1!

q̄~ t8!5@qf~ t8!1qb~ t8!#/2

with corresponding collective momenta

p̃~ t8!5pf~ t8!2pb~ t8!,
~A2!

p̄~ t8!5@pf~ t8!1pb~ t8!#/2,

whereqf(t8) andqb(t8) are the forward and backward clas-
sical paths, respectively, andpf(t8) andpb(t8) are the corre-
sponding momenta. Note that in the context of the time cor-
relation function given by Eq.~2.13! the initial collective
coordinates are given byq̄~0!5~q11q2!/2 and q̃~0!5q12q2
and the final collective coordinates are given byq̄(t)5qt and
q̃(t)50. Assuming that the path differenceq̃(t8) is small,
one can expand the action differenceDSst in Eq. ~2.13! to
linear order inq̃ such that

DSst5Sst~q1 ,qt ;t !2Sst~q2 ,qt ;t !.2p̄0•q̃0 , ~A3!

wherep̄05p̄st~0! and q̄05q̄st~0!. Furthermore, the difference
of the forward and backward stationary paths can be ignored
in the nonexponential factor of Eq.~2.13! and a Jacobian
transformation can be performed, giving

E dqtudet ]qt /]p̄0u215E dp̄0 ~A4!

which changes the semiclassical boundary-value problem to
an initial-value problem. Putting all the pieces together and
omitting the irrelevant indices, we have

^Â~ t !B̂~0!&W5
1

hN E dqE dpW~q,p;b!

3A@qcl~ t !#B@qcl~0!#, ~A5!

where qcl(t) is the classical trajectory andW~q,p! is the
well-known Wigner distribution function, defined as65

W~q,p;b!5
1

Z E dq̃e2 ip•q̃/\r~q1q̃/2,q2q̃/2;b!. ~A6!

Assuming the high-temperature approximation of the canoni-
cal density matrix, i.e.,

r~q1 ,q2 ;b!5S m

2p\2b D N/2 expH 2
1

2\2b
~q12q2!•m
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•~q12q2!2bVS q11q2
2 D J , ~A7!

the Wigner distribution function~A6! reduces to the Boltz-
mann distribution function. The classical time correlation
function is then completely recovered, giving

^A~ t !B~0!&cl5
1

Zcl

1

hN E dqE dp

3exp@2bHcl~p,q!#A@qcl~ t !#B@qcl~0!#

~A8!

with H~p,q! andZcl being the classical Hamiltonian and par-
tition function, respectively. Thus, classical dynamics results
from the high temperature approximation of the density ma-
trix and the linear expansion of the action difference of the
forward and backward stationary paths in the semiclassical
expression for the time correlation function. The reduction to
the classical limit starting from the initial-value approxima-
tion does not differ from the above derivation. The Weyl

ordering of operators simplifies the analysis, though the clas-
sical limit does not depend on operator orderings.

Clearly, Eq.~A5! implies that a quasiclassical dynamics
can be constructed based on the Wigner distribution function.
On the other hand, the fact that the Wigner distribution func-
tion is not positive definite complicates the interpretation of
the Wigner distribution as a phase-space quantum distribu-
tion function. However, one might adopt a coarse-grained
Wigner distribution, such as the Husimi distribution
function,75 as a quantum analogy to the classical Boltzmann
distribution function.

APPENDIX B: DISCRETE DERIVATION OF THE
JACOBI EQUATION

For convenience, the derivation in this Appendix is pre-
sented for one degree of freedom as the multidimensional
generalization presents no special difficulties. To start, we
define the determinant of the following two matrices as

Dq~P!5detS 22e2W1 21 0 •••

21 22e2W2 21 •••

A A A A

••• 21 22e2WP22 21

••• 0 21 22e2WP21

D ~B1!

which appears in the discrete expression for the position–position propagator, and

Dp~P!5detS 22e2W1 21 0 •••

21 22e2W2 21 •••

A A A A

••• 21 22e2WP21 21

••• 0 21 12 1
2e

2WP

D ~B2!

which appears in the position–momentum propagator. Note
that the determinant here is the product of the eigenvalues
and thereby does not imply the absolute value. It is then easy
to observe the following iterative relations:

Dq~P11!5~22e2WP!Dq~P!2Dq~P21! ~B3!

and

Dp~P!5@12~e2/2!WP#Dq~P!2Dq~P21!. ~B4!

Combining Eqs.~B3! and ~B4!, we have

Dp~P!5 1
2@Dq~P11!2Dq~P21!#. ~B5!

To associate the above difference equation to differential
equations, we take the limite→0, define the continuous vari-
able t5eP, and introduce continuous variables
Jq(t)5eDq(P)/m andJp(t)5Dp(P). With these definitions
in hand, we can rewrite Eqs.~B3! and ~B5! as

J̈q1W~ t !Jq50 ~B6!

and

mJ̇q5Jp ~B7!

with the boundary conditions specified asJq(0)50 and
Jp(0)51. Obviously, Eqs.~B6! and~B7! are identical to the
Jacobi equations if W(t) is specified by mW(t)
5d2V[qst(t)]/dq

2; therefore,Jq andJp are the usual Jacobi
variables, i.e.,Jq(t)5]q(t)/]p1 andJp(t)5]p(t)/]p1 .
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