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Abstract. The existence of an optimal thermal bath to facilitate robust
energy transfer between the spectrally separated B800 and B850 rings in
light-harvesting complex 2 (LH2) of purple bacteria is investigated via the
multichromophoric Förster theory. Due to the inherent energy bias between the
two rings, the energy transfer rate from B800 to B850 is maximized as a function
of the bath coupling strength, establishing an optimization criterion. Critically,
upon inclusion of energetic disorder, this maximum is averaged out. However,
noting the distribution of transfer rates, we find that the bath coupling strength
can yield a minimal dispersion for the rate distribution, i.e. a maximum ratio of
mean to standard deviation, thus achieving maximum energy transfer robust to
the effects of static disorder.
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Quantum transport in a noisy, disordered system is of fundamental interest in condensed matter
physics, and is ubiquitous in solid state, semiconductor, chemical and biological physics.
In the latter most, much effort has recently focused on understanding the remarkably high
efficiency of excitation energy transfer (EET) processes in photosynthetic pigment–protein
complexes [1–6]. Significantly, this high efficiency is achieved in the presence of an inherently
noisy and disordered environment and over many different length and time scales. The strength
of the noise may vary from weak to strong, but often is comparable to the intrasystem electronic
coupling strengths, so that over the course of the EET the exciton motion ranges from largely
coherent to completely incoherent [7, 8]. The presence of disorder furthermore, either in the
electronic coupling (structural) or site energies (energetic), can dramatically alter the energy
landscape and thus the EET dynamics. In order to fully understand the design principles of the
pigment–protein complex, disorder must be included in the optimization of the coherent and
incoherent quantum dynamics with respect to the interaction with the protein environment. The
establishment of optimal design principles for efficient EET in these natural complexes can have
direct implications for the design of efficient synthetic devices [9–12].

The B800 and B850 rings of light-harvesting complex 2 (LH2) in purple bacteria provide
a perfect pigment–protein complex for studying the interplay of coherent and incoherent
exciton motion [13, 14]. Here, the pigments of the B800 ring essentially behave as monomers
so that its intraring exciton motion is incoherent, while the pigments of the B850 ring are
strongly electronically coupled, so that its intraring exciton motion is coherent. The B850
ring of LH2 also possesses a high degree of structural N -fold symmetry and consequently
eigenstate degeneracy (promoting exciton delocalization) [12, 15–17], so that the presence of
energetic disorder (which promotes exciton localization) markedly affects its coherent intraring
dynamics. Consideration of energetic static disorder in LH2 is thus crucial to answering the
question of an optimal thermal bath in the B800–B850 EET process. Optimization of the
EET process with respect to the bath interaction has to date been considered primarily for
pigment–protein complexes with little-to-no structural symmetry so that inclusion of disorder is
not crucial [18–21].

An appropriate theory for describing the B800–B850 EET is multichromophoric Förster
resonance energy transfer (MC-FRET) [22–24], where the MC system is partitioned into
a molecular complex with strong intracomplex coupling (donor complex) weakly coupled

New Journal of Physics 15 (2013) 125030 (http://www.njp.org/)

http://www.njp.org/


3

to a second molecular complex with strong intracomplex coupling (acceptor complex). The
MC-FRET theory then provides a description of the intercomplex EET rate while correctly
accounting for the intracomplex electronic coupling. Furthermore, provided the intercomplex
electronic coupling is weak enough, the theory is valid for a wide range of the bath coupling
(noise) strength. Application of the MC-FRET theory however, poses the formidable problem
of solving the emission and absorption density operators of a multichromophoric complex
[25, 26]. Here the presence of both intracomplex electronic coupling and system–bath coupling
ultimately requires a perturbative treatment of either coupling for practical solution (in contrast
to the single-chromophore FRET, where the donor-emission and acceptor-absorption operators
of the single chromophores can be solved systematically, by virtue of the cumulant expansion
technique [27]). For example, in a previous application of MC-FRET to B800–B850 EET,
Mukai et al [28], while solving the diagonal approximation of the MC-FRET, calculate the
Green’s function’s self-energy via a second order perturbation in the system–bath coupling.
Similarly, in a study of the energetic optimization of B800–B850 EET, Jang et al [29],
while solving the MC-FRET, employ a quantum master equation valid to second order in
the system–bath coupling. In both applications, the bath coupling strength must remain weak
relative to the intracomplex electronic coupling. To overcome this difficulty, we utilize a
simple, non-perturbative method for calculating the MC-FRET rate, based on the diagonal
approximation in the eigenstate basis and the assumption that the eigenstate bath coupling is
directly proportional to its inverse participation ratio (IPR). This IPR MC-FRET approach,
which is non-perturbative in the bath coupling strength, allows one to interpolate approximately
between the weak and strong bath coupling regimes. Furthermore, its computational simplicity
allows us to easily study the disordered transfer rate and its distribution over the full range of
bath coupling of LH2. The reliability of the approximations involved in the IPR MC-FRET and
proposed methods to improve upon its accuracy are presented in [30, 31].

In this work, we report the existence of a maximum relative dispersity (i.e. ratio of mean to
standard deviation or signal-to-noise ratio (SNR)) for the distribution of transfer rates between
the B800 and B850 rings in LH2 as a function of the bath coupling strength, allowing for
robust EET in the presence of energetic static disorder. At room temperature, in the absence
of disorder an optimal coupling strength is easily identifiable due to the appearance of a well-
defined maximum rate at an intermediate value of the coupling. Upon inclusion of disorder
however, whereby this maximum is averaged out, we must extend our optimization criterion
to include the dispersion of the distribution of transfer rates, whence an intermediate coupling
strength may still be considered optimal as it yields a minimal dispersion, i.e. maximal transfer
rate and minimal deviation, thus achieving efficient EET robust to the effects of static disorder.

1. Theory

1.1. Generalized Förster resonance energy transfer rate

Assuming that the electronic coupling J between the donor (D) and acceptor (A) systems is
weak and that the donor and acceptor thermal environments are statistically independent, the
EET rate is given by the MC-FRET rate [22, 24]

k =

ND∑
m,m′

NA∑
n,n′

Jm,n Jm′,n′

2π h̄2

∫
∞

−∞

ED
m′,m(ω)I A

n,n′(ω) dω, (1)
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where ND and NA are the number of donor and acceptor chromophores respectively, Jmn is
the intercomplex electronic coupling between donor site m and acceptor site n, ED

m′,m(ω) and
I A

n,n′(ω) are the site basis elements of the donor emission and acceptor absorption density
operators via ED

m′,m(ω) = 〈m ′|ED(ω)|m〉 and I A
n,n′(ω) = 〈n|IA(ω)|n′〉. Calculation of the MC-

FRET rate can be greatly simplified by assuming that the donor emission and acceptor
absorption density operators are diagonal in their respective eigenstate bases, viz.

〈µ|ED(ω)|µ′
〉 ≈ ED

µ (ω)δµ,µ′,

〈ν|IA(ω)|ν ′
〉 ≈ I A

ν (ω)δν,ν′,
(2)

where ED
µ (ω) and I A

ν (ω) are the diagonal elements of the emission and absorption density

operators in the eigenstate basis. Transforming the basis in equation (1), |m〉 =
∑ND

µ Cm
µ |µ〉 and

|n〉 =
∑NA

ν Cn
ν |ν〉, and substituting equations (2), we have the diagonal (secular) MC Förster

rate

k =

ND∑
µ=1

NA∑
ν=1

∣∣Jµ,ν

∣∣2
2π h̄2

∫
∞

−∞

ED
µ (ω)I A

ν (ω) dω (3)

often referred to as the generalized Förster rate or the diagonal approximation of MC-FRET,
where Cm

µ and Cn
ν are the donor and acceptor eigenstate coefficients, respectively, and we have

introduced the eigenstate electronic coupling

Jµ,ν =

ND∑
m=1

NA∑
n=1

Jm,nCm
µ Cn∗

ν .

EET now occurs via an effective dipolar coupling Jµ,ν between pairs of donor and acceptor
eigenstates |µ〉 and |ν〉. The diagonal MC-FRET (3) has previously, successfully been applied
to EET in LH2 [24, 28].

In order to evaluate the overlap integral in equation (3), we recall that the intracomplex
electronic coupling reduces the lineshape of each individual excitonic transition, so that the
spectrum of a multichromophoric complex may be approximated by a weighted sum of the
eigenstate spectra with their lineshape functions scaled by their corresponding eigenstate
participation ratios [32]. This approximation, where the appearance of the IPR is a natural
outcome of the unitary transformation to the eigenstate basis, is often used in the calculation
of spectroscopic lineshapes for its simplicity. Hence, in addition to using the diagonal
approximation equation (3), we adopt the following expressions for the emission and absorption
spectra

ED
µ (ω) ≈ ρst

µ2<

∫
∞

0
dt eiωte−i(εµ−N D

µ λ)t/h̄−N D
µ g∗(t) (4)

and

I A
ν (ω) ≈ 2<

∫
∞

0
dt eiωte−i(εν+N A

ν λ)t/h̄−N A
ν g(t), (5)

where g(t) =
∫ t

0 dt ′
∫ t ′

0 dt ′′C(t ′′) is the lineshape function of a single chromophore (monomer)
and C(t) is the bath correlation function. Here εµ and εν are the eigenenergies and N D

µ =∑ND
m=1 |Cµ

m|
4 and N A

ν =
∑NA

n=1 |Cν
n |

4 are the participation ratios of the donor and acceptor
complexes respectively, so that the magnitude of the lineshape function of the µth/νth exciton
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is inversely proportional to the extent of its delocalization, i.e. its IPR. The weighting factor
appearing in equation (4) is simply the µth eigenstate population of the donor complex

ρst
µ = e−βεµ

/∑
i

e−βεi .

Finally, both equations (4) and (5) satisfy the normalization conditions
∫

∞

−∞
Trs,D{ED(ω)}dω = 1

and
∫

∞

−∞
Trs,A{I A(ω)}dω = NA, where Trs,D/A is the trace over the donor/acceptor system

degrees of freedom and the integrands are the emission and absorption density of states,
respectively. Equation (3) combined with equations (4) and (5) constitute the IPR MC-FRET
approximation, which we now apply to the B800–B850 EET in disordered LH2.

1.2. Light-harvesting complex 2 (LH2) of purple bacteria

An immense literature exists on the structure and dynamics of light-harvesting complexes based
on an effective Hamiltonian where each bacteriochlorophyll (BChl) molecule of the complex
is modeled by a two-level system describing its S0 → S1 transition (the Q y transition) [33].
Here we study the LH2 of Rhodopseudomonas acidophila, (PDB ID code 1NKZ) [34], where,
due to the monomeric structure of the B800 ring, we model the donor complex with a
single chromophore with a site energy of ED = 12 465 cm−1, so that ND = N D

µ = ρst
µ = 1, in

which case the emission spectrum equation (4) becomes the exact monomer spectrum (the
spectral calculation is that of a two-level system [27]). This approach to modeling the B800
ring in calculating the B800–B850 EET is successfully used in [23, 28, 29]. The possible
role of nearest-neighbor coherence in LH2 B800 is discussed in the conclusion section,
and is in general consistent with the calculation without such coherence. To construct the
effective Hamiltonian of the B850 ring we use the details presented in [35], where the site
energies of the two BChls in the basic αβ-heterodimer subunit are E2n−1 = 12 406 cm−1 and
E2n = 12 602 cm−1 (n = 1, . . . , 9), the intradimer coupling is J2n−1,2n = J2n,2n−1 = 363 cm−1

(n = 1, . . . , 9) and the interdimer coupling is J2n+1,2n = J2n,2n+1 = J1,18 = J18,1 = 320 cm−1 (n =

1, . . . , 8). The intercomplex B800–B850 electronic couplings Jmn are obtained from a point
dipole approximation assuming a transition dipole strength of 6.1 D, yielding a largest coupling
of 25 cm−1.

While no direct information on the form and magnitude of the bath spectral density of LH2
is yet available, several works have investigated the related B777 and B820 pigment–protein
complexes [36–38], revealing a broad bath spectral density with maximum peaks estimated
around 180 and 100 cm−1 for B777 and B820 respectively. Here, for the specific description of
the continuum of harmonic oscillators comprising the donor and acceptor baths we use the
form of the Drude–Lorentz spectral density, h̄ J (ω) = 2λ3ω/(ω2 + 32), where λ is the site
reorganization energy (bath coupling strength) and 3 is the Debye angular frequency (inverse
of the bath correlation time). The bath correlation function is simply [39]

C(t) =

∫
∞

0
dω J (ω) [coth(β h̄ω/2) cos ωt − i sin ωt] , (6)

where we have assumed independent, identical baths at each site. Further details are presented
in appendix A. The above bath description contains the well-known limits of slow and fast bath
dynamics, corresponding to inhomogeneous and homogeneous broadening, respectively [27].
A particularly nice result emerges when we consider the corresponding IPR MC-FRET transfer
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Figure 1. Comparison of the experimental absorption spectrum [40] (open
circles) and the calculated B800 (solid line) and B850 (dashed line) absorption
spectra at T = 300 K. The B800 fit is obtained for an energetic disorder of
σB800 = 55 cm−1 and reorganization energy of λB800 = 40 cm−1, while the B850
fit is obtained for σB850 = 290 and λB850 = 200 cm−1.

rates, which yield expressions formally identical to the Marcus rate of electron transfer and
the inverse lifetime of the Haken–Strobl model, respectively, with the bath coupling strength
scaled by the sum of the participation ratios. We present this result in appendix B for the high
temperature approximation of g(t), where simple analytical expressions can be obtained in both
limits. Here, however we set the bath angular frequency to 3 = 0.01 fs−1, an intermediate value
of physiological relevance to pigment–protein complexes, where neither the slow nor fast bath
dynamics limit is applicable.

In the presence of energetic static disorder, due to protein structural dynamics that occur on
a time scale much longer than the excitation dynamics, the site transition energies are modulated
so that Em/n → Em/n + δEm/n, where we assume that δEm/n are independent Gaussian random
variables with zero mean and standard deviations σm = σD (m = 1) and σn = σ (n = 1 . . . 18).
In order to establish the bath coupling and disorder strengths in our model at T = 300 K, we
calculate the B800 and B850 absorption spectra. The MC B850 spectrum is calculated viz.

I (ω) =

〈
NA∑
ν=1

∣∣∣ Edν

∣∣∣2 I A
ν (ω)

〉
, (7)

where Edν = 〈0| Ed |ν〉 is the exciton transition dipole moment, I A
ν (ω) is given by equation (5),

and 〈· · ·〉 indicates averaging over the disorder (achieved by numerically averaging over 10 000
realizations of the spectrum as a function of ω). |0〉 is the ground state and represents the vacuum
state of excitons.

In figure 1, comparison of the spectra with experimental results [40] is presented. The
spectrum fits for B800 (solid line) and B850 (dashed line) are obtained for σB800 = 55 and
λB800 = 40 cm−1, and σB850 = 290 and λB850 = 200 cm−1, respectively. These parameters are in
good agreement with previous calculations of the B850 linear absorption spectrum using the
exact hierarchy method [41] and yield an average transfer rate of 〈k〉 = 0.7 ps−1, in reasonable
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Figure 2. The transfer rate k, equation (3), in the absence of disorder as a
function of (a) the reorganization energy λ for various values of the temperature
T = 300, 77 and 10 K (solid, dashed and dotted), and (b) the temperature T for
λ = 500, 100 and 10 cm−1 (solid, dashed and dotted).

agreement with experiment (1.25 ps−1) [40]. Hence, comparing the donor B800 and acceptor
B850 parameters, in calculating the rate for various disorder and bath coupling strengths
below, we set λA = 5λ and σD = 0.2σ . Treating the B800 ring as a monomer fails to
capture the blue tail originating in the B800 intraring coherence [42]. Previous calculations
of the B800–B850 EET rate [22–24, 42], both with and without disorder, have employed
numerous theoretical approaches and parameterization schemes. Advances in single molecule
spectroscopies continue to yield even finer detailed structural and dynamical information
on pigment–protein complexes (site energies, electronic couplings, bath spectral densities,
disorder characteristics, etc) [43, 44]. While we here employ the simplest of descriptions of
the B800–B850 model and EET process, the essential qualitative dependence of the EET on
the disorder and bath coupling strengths is captured, so that the major conclusions of this work
remain intact.

2. Results

We begin by considering the optimal bath coupling strength in the absence of energetic disorder.
In figure 2(a), the B800–B850 EET rate defined in equation (3) is plotted as a function
of the reorganization energy λ (cm−1), for various values of the temperature T (K). For all
temperatures, the transfer rate exhibits a clear maximum as a function of the reorganization
energy. This is directly due to the asymmetry of the system, i.e. the energy bias between 800 and
850 nm, allowing one to identify an optimal coupling strength. As temperature decreases, the
range in coupling strength for which the rate is maximal narrows and shifts to stronger coupling.
This can be understood as due to the severe narrowing of the spectra at low temperatures, so
that increasingly strong coupling is required to broaden the spectra and achieve overlap. In
figure 2(b), the temperature dependence of the transfer rate is shown for weak, intermediate
and strong coupling, displaying a maximum in each case. However, as the coupling strength
increases, the maximum shifts to lower temperatures, becoming less pronounced, indicating
temperature insensitivity, so that the rate is almost temperature independent. We remark that
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Figure 3. The average transfer rate 〈k〉 as a function of the reorganization
energy for increasing strength of the static disorder, σ = 20, 50, 100, 200 and
290 cm−1 and T = 300 K. The presence of disorder dramatically changes the
profile, completely removing the maximum present in the ordered case (short
dashed line).

at low temperatures and bath coupling strengths, where the exciton motion is almost entirely
coherent, the MC-FRET theory itself (regardless of the IPR MC-FRET approach used here)
is no longer valid, indicated by the truncated dashed and dotted curves in both figures 2(a)
and (b). Further study of the disorder for a wide range in temperature and coupling could
elucidate the observed temperature insensitivity [45]. Considering here only the physiologically
relevant temperature T = 300 K, we identify the optimal bath coupling strength in the absence
of disorder as a weak to intermediate bath coupling strength 10 < λ < 100 cm−1.

We next consider the effect of energetic disorder at room temperature. In figure 3 we plot
the average transfer rate, as a function of the reorganization energy for increasing strength of the
disorder at T = 300 K. Upon increasing the disorder, the well-defined maximum transfer rate
observed in the disorder-free rate is completely averaged out, yielding essentially monotonic
average rate dependence (solid curve) at σ = 290 cm−1, so that we cannot easily identify an
optimal bath couping strength. Hence, the average rate is an insufficient optimization criterion.
However, an additional important result is apparent in figure 3. Depending on λ, increasing the
energetic disorder σ can either enhance or suppress the transfer rate (essentially enhancing
the rate for weak coupling while suppressing for strong coupling). Thus, by reducing the
eigenstate energy mismatch, resulting in increased spectral overlap, the disorder can assist the
EET process. Furthermore, at weak coupling λ < 10 cm−1, the disorder dramatically enhances
the transfer rate, so that 〈k〉 is highly sensitive to σ . This is in sharp contrast to the dependence
around λ ∼ 200 cm−1, where the disorder only mildly reduces the rate. Indeed, while the disorder
ultimately removes the maximum of the disorder-free transfer rate (short dashed line), the
average transfer rate 〈k〉 in this range remains largely unaffected, suggesting a robustness
afforded at intermediate coupling strength.

To investigate further, in figure 4(a) we plot the probability density of the transfer rate for
weak, intermediate and strong bath coupling strengths for a disorder strength of σ = 290 cm−1.
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Figure 4. (a) The transfer rate probability density at T = 300 K, for weak,
intermediate and strong reorganization energy, λ = 10, 200 and 500 cm−1, (solid,
dashed and dotted) and a disorder of σ = 290 cm−1. (b) The relative disparity
(SNR) 〈k〉 /σk as a function of λ. A maximal EET rate and minimal deviation, i.e.
maximum relative dispersity (SNR), can be achieved as a function of coupling
strength.

Immediately, one notes the significant standard deviation of the density σk for weak bath
coupling (solid curve), due to the high sensitivity of the transfer rate to the disorder in this
regime. This sensitivity is removed upon increasing the coupling, as evident from the narrowing
distributions. However, increasing the coupling beyond λ ∼ 200 cm−1 results in a reduced
average rate as indicated by the shift in peaks. This observation is verified in figure 4(b), where
the relative dispersity of the transfer rate or the SNR, defined as the ratio of the mean to the
standard deviation (i.e. the inverse of the coefficient of variation), SNR = 〈k〉 /σk , displays a
maximum as a function of λ. In order to achieve efficient EET from B800 to B850 in LH2,
a maximal transfer rate accompanied by a narrowed distribution of rates can be attained as a
function of the bath coupling strength. In other words, there exists an optimal value of the bath
coupling strength for achieving maximal EET rate and minimal deviation (high dispersity of
rates), resulting in a maximal EET process robust to the effects of static disorder. This constitutes
the principal result here reported.

3. Conclusions

We conclude the existence of an optimal bath coupling strength in LH2 for producing maximal
B800–B850 EET and minimal deviation in order to achieve robust EET. While a fast average
transfer rate is achieved at weak bath coupling, the high sensitivity to the disorder yields a
very broad probability density, revealing a fragility of the transfer rate in this coupling regime.
This fragility originates in the coherent dynamics at weak bath coupling, where the EET
process is dominated by the energy bias and hence is sensitive to the disorder. By simply
extending our optimization criterion beyond 〈k〉 to include the standard deviation σk , i.e. to
the relative dispersity (i.e. SNR), we can consider this fragility. Hence, the fact that the relative
disparity can be maximized as a function of the bath coupling strength has strong implications
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for the interplay of coherent and incoherent dynamics in photosynthetic systems, suggesting
that it is not optimal to promote fully coherent or incoherent transfer dynamics. Our results
ultimately compound the importance of the interplay of coherent and incoherent dynamics in
photosynthetic systems.

In summary, in order to investigate the existence of an optimal heat bath regime to facilitate
EET from B800 to B850 in LH2, we have calculated the MC Förster rate, equation (3),
for a wide range of the bath parameter space in the presence of energetic disorder. To
achieve this, in addition to the diagonal approximation in the eigenstate basis, novel use
of approximate expressions for the emission and absorption spectra, capable of capturing
the essential qualitative behavior of the energy transfer process for a wide range of the
reorganization energy λ, has been made. Our demonstration of an optimal coupling strength
to achieve a maximum relative dispersity (i.e. SNR) has implications for understanding efficient
EET and pigment–protein design. A future study that employs more rigorous calculation and
detailed modeling of the B800–B850 EET rate can provide a better quantitative description of
the maximized relative dispersity and hence determine more accurately the optimal coupling
range. Indeed, inclusion of the B800 coherence, which enhances the average EET rate and
narrows its distribution at room temperature [13, 42], is expected to re-enforce our finding.
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Appendix A. LH2 model calculation details

Calculation of the IPR MC-FRET can be simplified by rewriting the integral in the time domain.
Substituting equations (4) and (5) into equation (3) we have

k =

ND∑
µ=1

NA∑
ν=1

ρst
µ

|Jµ,ν|
2

h̄2 2<

∫
∞

0
e−i(εν−εµ+N D

µ λD+N A
ν λA)t/h̄e−N D

µ gD(t)−N A
ν gA(t)dt, (A.1)

where we have ultimately used the fact that g(−t) = g∗(t). For the LH2 model calculation
outlined above, we set ND = N D

µ = ρst
µ = 1 and λA = 5λD so that we have

k =

18∑
ν=1

|J1,ν|
2

h̄2 2<

∫
∞

0
e−i(εν−ED+λ+5N A

ν λ)t/h̄e−g(t)(1+5N A
ν )dt, (A.2)

where we have noted that εµ=1 = ED and set λD = λ. For the Drude–Lorentz spectral density, the
integral in the bath correlation function equation (6) can be evaluated via contour integration,
so that the exact expression for the lineshape function is [27]

g(t) =
λ

h̄3
(cot(β h̄3/2) − i)

(
e−3t + 3t − 1

)
+

4λ3

βh̄2

∞∑
q=1

(
e−vq t + vq t − 1

)
vq(v2

q − 32)
, (A.3)
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where vq = 2πq/βh̄ are the Matsubara frequencies. In the high temperature limit βh̄3 � 1,
equation (A.3) simplifies to

g(t) =

(
2λ

βh̄232
− i

λ

h̄3

) (
e−3t + 3t − 1

)
. (A.4)

The intercomplex couplings Jmn are calculated using the point dipole approximation

Jmn = C

(
Edm · Edn

|Ermn|
3 −

3(Ermn · Edn)(Ermn · Edm)

|Ermn|
5

)
.

Here Edm = 〈0| Ed |m〉 and Edn = 〈0| Ed |n〉 are unit vectors describing the direction of the transition
dipole moments of the donor and acceptor complexes, Ermn is the vector connecting the
centers (the Mg atom) of chromophore m and choromophore n, and C is an appropriate,
dimensioned constant. The intracomplex couplings of the acceptor B850 ring (excluding the
nearest neighbors) are calculated in identical manner. All coordinates were obtained from the
protein data bank (ID code 1NKZ), with the transition dipole moments calculated from the NB

to ND atom. The coordinates of the Mg atom of the single B800 chromophore used in the
calculation were 28.62, 11.76 and 31.19 Å.

Appendix B. Slow and fast bath dynamics

The limiting cases of the line shape function g(t) for slow bath (inhomogeneous broadening)
and fast bath (homogeneous broadening) dynamics are easily obtained analytically in the high
temperature approximation. In the limit of long bath correlation time (β h̄232/2λ)1/2

� 1,
the high temperature lineshape function equation (A.4) simplifies to g(t) = λt2/βh̄2 [27].
Substituting this expression into equations (4) and (5), we obtain the Gaussian emission and
absorption spectra

ED
µ (ω) = ρst

µ

h̄√
4π N D

µ λ/β
e−β(εµ−N D

µ λ−ωh̄)
2
/4N D

µ λ (B.1)

and

I A
ν (ω) =

h̄√
4π N A

ν λ/β
e−β(εν+N A

ν λ−ωh̄)
2
/(4N A

ν λ). (B.2)

The above eigenstate spectra have a stokes shift of Nµ,νλ, where we have introduced the sum
of participation ratios Nµ,ν = N D

µ + N A
ν . Evaluating the overlap integral equation (3), we obtain

the IPR MC-FRET rate in the slow bath limit

k =

ND∑
µ=1

NA∑
ν=1

∣∣Jµ,ν

∣∣2
2π

ρst
µ

e−β(Nµ,νλ+εν−εµ)2/4Nµ,νλ√
4π Nµ,νλ/β

, (B.3)

The donor–acceptor transfer rates in equation (B.3) are formally identical to the Marcus rate
of electron transfer except that the reorganization energy is scaled by a factor of Nµ,ν . In the
case of a single donor and single acceptor chromophore Nµ,ν → 2; recall that FRET assumes
independent donor and acceptor baths, so that a factor of 2 appears in the bath coupling when
compared to the Marcus rate, which assumes anti-correlated baths. In the opposite limit of short
bath correlation time (β h̄232/2λ)1/2

� 1, the high temperature lineshape function simplifies to
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g(t) = ((β h̄3)−1
− i)λt/h̄. Substituting this expression into equations (4) and (5), we obtain the

Lorentzian emission and absorption spectra

ED
µ (ω) = ρst

µ

1

π

N D
µ λ

N D
µ

2
λ2/(β h̄23) + (εµ − ωh̄)2β3

, (B.4)

I A
ν (ω) =

1

π

N A
ν λ

N A
ν

2
λ2/(β h̄23) + (εν − ωh̄)2β3

. (B.5)

Note the absence of the Stokes shift between the spectra. The IPR MC-FRET rate in the fast
bath limit is then

k =

ND∑
µ=1

NA∑
ν=1

∣∣Jµ,ν

∣∣2
2π

ρst
µ Nµ,νλβ h̄23

π
(
N 2

µ,νλ
2/(βh̄23)2 + (εµ − εν)2/h̄2

) . (B.6)

Again in the case of a single donor and single acceptor chromophore, where Nµ,ν → 2, it is
easy to see that the rates in equation (B.6) are formally identical the inverse exciton lifetime as
yielded by the well-known Haken–Strobl model of a two-level system (the Haken–Strobl model
assumes an infinite temperature bath, here equivalent to a high-temperature fast bath) [9].
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