研究论文

氮苄叉基苯胺分子的平面扭曲驱动力的DFT研究

马艳平,包鹏,虞忠衡*

(中国科学院化学研究所分子动态稳态国家重点实验室 北京 100080)

收稿日期 2005-10-17 修回日期 2006-3-15 网络版发布日期 接受日期

摘要 为了探索DFT方法中氮苄叉基苯胺分子的扭曲驱动力,通过把非平面氮苄叉基苯胺(NBA) 分子的DFT能量分成 π 和 σ 的方法,分析了垂直离域能 $\Delta E^{V}(\theta)$ 及 σ - π 轨道作用能 $\Delta E^{\sigma\pi}(\theta)$ 的失稳定性,并讨论了在扭曲过程中它们所起的作用. 在B3LYP/6-31G*, 6-31IG*, 6-31G(2d), 6-311G(2d) 水平下的计算结果显示:与经典观点不同, π 电子的离域是失稳定的,且平面时失稳定性最强,是分子扭曲的动力;但 σ - π 轨道作用也是失稳定的,随着扭角的增大其失稳定性增强,是分子扭曲的阻力. NBA分子的大扭角构象,是包含 π - π , σ - π 轨道作用在内的各种电子相互作用共同作用的结果.

关键词 <u>能量分解</u> <u>密度泛函理论</u> <u>垂直离域能</u> <u>σ-π轨道作用能</u> <u>氮苄叉基苯胺</u> 分类号

DFT Study of Driving Force for Distorting Benzylideneaniline Molecule Away from Planar Geometry

MA Yan-Ping, BAO Peng, YU Zhong-Heng*

(Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080)

Abstract In order to understand the nature of the driving force for distorting the non-planar molecule benzylideneaniline (NBA) away from its planar geometry, two energy effects, the vertical resonance energy $DE^V(\theta)$ and the σ -π orbital interaction energy $\Delta E^{\sigma\pi}(\theta)$, were calculated with the DFT method, and then partitioned into their π and σ parts, denoted as $DE^{V-\pi}(\theta)$ and $DE^{V-\sigma}(\theta)$, $DE^{(\sigma\pi)-\pi}(\theta)$ and $DE^{(\sigma\pi)-\sigma}(\theta)$ respectively. $DE^V(\theta)$ is always destabilizing, and has a tendency to distort NBA molecule away from its planar geometry as far as possible. Similarly, $DE^{\sigma\pi}(\theta)$ is also destabilizing, however, it is most destabilizing at the θ =90° geometry. NBA molecule would prefer the θ =90° geometry if there were no interaction between the σ and ρ systems. The fact $dE^T(\theta)/d\theta$ =0 (total energy) around θ =40° geometry, is a compromise between the various orbital interactions including π - π , σ - π interactions.

Key words energy separation density functional theory vertical resonance energy σ - π orbital interaction energy benzylideneaniline

DOI:

通讯作者 虞忠衡 yuzh@iccas.ac.cn

扩展功能

本文信息

- ► Supporting info
- ▶ PDF(390KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- Email Alert
- ▶文章反馈
- ▶浏览反馈信息

相关信息

▶ <u>本刊中 包含"能量分解"的</u> 相关文章

▶本文作者相关文章

- 马艳平
- 包鹏
- 虞忠衡