研究论文

热处理温度对铬掺杂二氧化钛表面结构和性质的影响

高碧芬 1,2 ,马颖 1 ,曹亚安 3 ,姚建年 *,1

(1中国科学院化学研究所 光化学重点实验室 北京100080)

(²中国科学院研究生院 北京100039)

(³南开大学物理学院 天津300071)

收稿日期 2005-11-1 修回日期 2006-3-2 网络版发布日期 接受日期

摘要 采用溶胶-凝胶法制备了铬掺杂二氧化钛(Cr-TiO₂),并对经过不同温度烧结的Cr-TiO₂的结构、吸收光谱及样品中铬的氧化态等进行了表征. 实验结果表明,在不高于723 K的温度烧结后,铬以Cr³ +的氧化物和Cr⁶⁺的铬酸盐或重铬酸盐的形式存在于TiO₂表面. 随着热处理温度的提高,Cr⁶⁺的含量逐渐增多. Cr-TiO₂在可见区400~550 nm的吸收带是由Cr³⁺的 4 A₂→ 4 T₁跃迁和O→Cr⁶⁺的 4 的 4 L₁→2e电荷转移等引起的,620~800 nm的吸收则是Cr³⁺的 4 A₂→ 4 T₂跃迁的结果. 前者随着烧结温度的升高而增强,后者则随着温度升高而下降. 关键词 <u>半导体</u><u>掺杂</u>二氧化钛 <u>格</u>可见光吸收</u>分类号

Effect of Annealing Temperature on the Surface Structure and Properties of Chromium Doped Titania

GAO Bi-Fen^{1,2}, MA Ying¹, CAO Ya-An³, YAO Jian-Nian*,¹

- (1 Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080)
- (² Graduated School of Chinese Academy of Sciences, Beijing 100039)
- (³ College of Physics, Nankai University, Tianjin 300071)

Abstract Chromium doped titanium dioxide $\operatorname{Cr-TiO}_2$ was prepared by the sol-gel method. The effects of annealing temperature on the crystal structure, oxidation states of chromium, and UV-vis absorption properties of $\operatorname{Cr-TiO}_2$ were investigated in details. Experiment results showed that chromium mainly existed on TiO_2 surface as $\operatorname{Cr}_2\operatorname{O}_3$ and chromate or dichromate of Cr^{6+} in $\operatorname{Cr-TiO}_2$ annealed at temperature no higher than 723 K. The content of Cr^{6+} was increased with the increase of temperature. The visible light absorption of $\operatorname{Cr-TiO}_2$ within $400 \sim 550$ nm should be attributed to the ${}^4\operatorname{A}_2 \rightarrow {}^4\operatorname{T}_1$ transition of Cr^{3+} and the $\operatorname{O} \rightarrow \operatorname{Cr}^{6+}$ charge transfer ($\operatorname{It}_1 \rightarrow \operatorname{2e}$). The absorption within $\operatorname{620} \sim 800$ nm was due to the ${}^4\operatorname{A}_2 \rightarrow {}^4\operatorname{T}_2$ transition of Cr^{3+} . The former was strengthened with the increase of annealing temperature, whereas the latter was weakened.

Key words semiconductor doping titanium dioxide chromium visible light absorption

DOI:

扩展功能

本文信息

- ► Supporting info
- ▶ <u>PDF</u>(304KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ► Email Alert
- ▶文章反馈
- ▶浏览反馈信息

相关信息

- ▶ <u>本刊中 包含"半导体"的</u> 相关文章
- ▶本文作者相关文章
- · <u>高碧芬</u>
- . ____
- · <u>马颖</u>
- 曹亚安
- 姚建年

通讯作者 姚建年 jnyao@iccas.ac.cn