Physics > Chemical Physics

Continuous dielectric permittivity I: Specific features of the dielectric continuum solvation model with a position-dependent permittivity function

M.V. Basilevsky, F. V. Grigoriev, Oleg Kupervasser
(Submitted on 2 Jul 2011 (v1), last revised 10 Aug 2011 (this version, v2))

We consider a modified formulation for the recently developed new approach in the continuum solvation theory (Basilevsky, M. V., Grigoriev, F. V., Nikitina, E. A., Leszczynski, J., J. Phys. Chem. B 2010, 114, 2457), which is based on the exact solution of the electrostatic Poisson equation with the space-dependent dielectric permittivity. Its present modification ensures the property curl E $=0$ for the electric strength field E inherent to this solution, which is the obligatory condition imposed by Maxwell equations. The illustrative computation is made for the model system of the point dipole immersed in a spherical cavity of excluded volume.

Comments:	31 pages, 4 figures Chemical Physics (physics.chem-ph); Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Statistical Mechanics (cond-mat.stat-mech)
Journal reference:	The Journal of Physical Chemistry B, 2010, 114 (49), 16427-16435
DOI:	$10.1021 / \mathrm{jp103239g}$
Cite as:	arXiv:1107.0407 [physics.chem-ph] (or arXiv:1107.0407v2 [physics.chem-ph] for this version)

Submission history

From: Oleg Kupervasser [view email]
[v1] Sat, 2 Jul 2011 19:38:02 GMT (317kb)
[v2] Wed, 10 Aug 2011 12:28:31 GMT (317kb)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

