表征O-H解离能参数的AM1计算

张红雨,陈德展

淄博学院生物与化学工程系;山东师范大学化学系.济南(250014)

收稿日期 修回日期 网络版发布日期 接受日期

摘要 对17种酚类化合物用半经验量子化学方法AM1计算了表征O一H解离能的参数 \triangle HOF值,即酚类化合物与其经抽氢反应产生的自由基生成热之差。经过与实验测定的17种酚类化合物的O一H解离能比较,评价了AM1方法在计算 \triangle HOF值方面的有效性。发现AM1计算的 \triangle HOF值与O一H解离能有很好的相关性(γ =0.9495),优于经验方法,

比如加和规则对O-H解离能的预测。虽然AM1方法在计算间位取代对O-H解离能的贡献方面是无效的,但将用于计算解离能类的参数以预测抗氧化剂活性还是可行的。

关键词 解离能 量子化学 化学键 键参数 键能 半经验方程 酚

分类号 0641

AM1 calculation of a parameter characterizing O-H bond dissociation 11:38 01-5-12energy

Zhang Hongyu, Chen Dezhan

Shandong Normal Univ, Dept Chem.Jinan(250014)

Abstract The O-H bond dissociation energy (BDE) experimentally determined for 17 phgenols were employed to evaluate the effectiveness of AM1 method used in calculating a parameter characterizing the O-H BDE, the difference of heat of formation between phenol and its free radical generated after H- abstraction reaction (\triangle HOF). It was found that the AM1 calculated \triangle HOF correlated well with the O-H BDE (\S =0. 9495), and AM1 was better than empirical method such as additive rule derived from experiments to estimate the O-H BDE. Although AM1 was invalid to characterize the contribution of meta groups to the O- H BDE, it is fairly applicable in calculating BDE-like parameters to predict free radical scavenging activity of phenolic antioxidants.

Key wordsQUANTUM CHEMISTRYCHEMICAL BONDSBOND PARAMETERBOND ENERGYSEMIEMPIRICAL EQUATIONSPHENOL

DOI:

通讯作者

扩展功能

本文信息

- ► Supporting info
- ▶ <u>PDF</u>(0KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶ <u>复制索引</u>
- ► Email Alert
- ▶ 文章反馈
- ▶ 浏览反馈信息

相关信息

- ▶ <u>本刊中 包含"解离能"的</u> 相关文章
- ▶本文作者相关文章
- 张红雨
- ・ 陈德展