论文

纳米SiO2改性超高分子量聚乙烯纤维的制备及其结构性能研究

于俊荣, 栾秀娜, 胡祖明, 刘兆峰

东华大学纤维材料改性国家重点实验室; 东华大学纤维材料改性国家重点实验室 上海 收稿日期 2004-6-9 修回日期 2004-7-29 网络版发布日期 接受日期

摘要 采用萃取阶段加入纳米粒子的方式,制得纳米 SiO_2 改性的超高分子量聚乙烯(UHMWPE)纤维. 借助于扫描电镜、声速法、WAXD、DSC、TMA和强力测试等手段,研究了纳米 SiO_2 对UHMWPE纤维结构和性能的影响. 结果表明,纳米 SiO_2 粒子在UHMWPE纤维中可达到均匀分散,分散尺寸约为 $50\sim100$ nm;改性后纤维取向度、结晶度基本不变,纤维横向晶粒尺寸大大降低,纤维力学强度稍有增加,力学模量大大增加(由1359. 2cN/dtex增加到1505. 9cN/dtex),同时,纤维热性能和热力学性能也得到大大改善.

关键词 <u>UHMWPE</u>纤维 纳米<u>SiO</u>, 结构 性能

分类号

PREPARATION AND STUDIES ON THE STRUCTURE AND PROPERTIES OF ULTRAHIGH MOLECULAR WEIGHT POLYETHYLENE/NANO-SiO₂ COMPOSITE FIBERS

YU Junrong, LUAN Xiuna, HU Zuming, LIU Zhaofeng

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; Donghua University; Shanghai 200051

Abstract UHMWPE/nano-SiO₂ composite fibers were prepared by the method of adding nano-SiO₂ in extracting stage, and the influence of nano-SiO₂ on the stmcture and properties of UHMWPE fibers were determined by SEM, sonic orientation, WAXD, DSC, TMA and mechanical measurements. The results showed that nano-SiO₂ particles diffused into UHMWPE gel fibers during the extracting stage, and they could be dispersed in hallo-size in UHMWPE fibers Compared to virgin UHMWPE fibers, the orientation and erystallinity of UHMWPE/nano-SiO₂ composite fibers remained unchanged, while the crystal size decreased greatly. After incorporating nano-SiO₂, UHMWPE fibers became both stiffer and tougher than the virgin ones, especially the fiber modulus, which was increased greatly from 1359.24 cN/dtex to 1505.90 cN/dtex Meanwhile. nano-composite UHMWPE fibers displayed a better thermal and thermomechanical stability.

Key words <u>Ultrahigh molecular weight polyethylene fiber</u> <u>Nano-SiO₂</u> <u>Structure</u> <u>Properties</u>

DOI:

扩展功能

本文信息

- ► Supporting info
- ▶ PDF(805KB)
- ▶[HTML全文](0KB)
- **▶参考文献**

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ▶ Email Alert
- ▶文章反馈
- ▶ 浏览反馈信息

相关信息

▶ <u>本刊中 包含 "UHMWPE纤维"</u> 的 相关文章

▶本文作者相关文章

- 于俊荣
- · 栾秀娜
- 胡祖明
- 刘兆峰