
26 March 1999

Ž .Chemical Physics Letters 302 1999 405–410

Using time-dependent rate equations to describe chirped pulse
excitation in condensed phases

Christopher J. Bardeen a,), Jianshu Cao b, Frank L.H. Brown c, Kent R. Wilson c

a Box 20-6, CLSL, Department of Chemistry, UniÕersity of Illinois, 600 S. Mathews AÕe., Urbana, IL 61801, USA
b Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts AÕe., Cambridge, MA 02139, USA

c Department of Chemistry and Biochemistry, UniÕersity of California, San Diego, La Jolla, CA 92093-0339, USA

Received 26 August 1998; in final form 2 December 1998

Abstract

A time-dependent rate equation formalism is developed to describe high-intensity excitation of molecules in condensed
phases using broadband laser pulses. When electronic and vibrational dephasing rates are fast relative to the pulse dynamics,
the generalized optical Bloch equations can be written as a set of coupled rate equations with coefficients that depend on the
time-dependent overlap of the pulse spectrum with the molecular lineshape. These rate equations are shown to reproduce
qualitatively the effects observed experimentally in recent quantum control experiments using high-intensity, chirped
femtosecond pulsed excitation. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Advances in both the theoretical understanding of
light-driven quantum molecular dynamics and the
experimental ability to create and shape light fields
has resulted in the field known as ‘quantum control’
w x1 . Recent experiments have involved the use of

w xchirped pulses 2–7 , in which the phase structure of
an ultrashort pulse is modified in order to control the
sample. Chirping the pulse delays some of its fre-
quency components with respect to others. A posi-
tively chirped pulse has low frequencies leading and
high frequencies trailing, while a negatively chirped
pulse has the opposite frequency ordering. For a zero
chirp or transform-limited pulse, all the frequencies
arrive at the same time. Note that we can modify the
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phase structure of the laser pulse, and thus its tempo-
ral properties, without changing the pulse energy or
the power spectrum. Recently, the techniques of
quantum control have been applied to large molecules

w x w xin condensed phases 8–10 and even proteins 11 .
The analysis of such chirped pulse experiments is the
subject of this Letter.

With systems like atoms or small molecules in the
gas phase, we can achieve selectivity by controlling
the quantum interferences among amplitudes of a

w xfew quantum states 1 . This is truly quantum con-
trol, since such interferences are purely the result of
quantum mechanics and cannot be understood from a
classical treatment. We consider here the opposite
limit of fast electronic and vibrational dephasing,
where such quantum coherences decay very rapidly.
Our approach is similar in spirit to a more sophisti-

w xcated treatment by Fainberg 12 which describes
high-power chirped pulse excitation in terms of mov-
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ing wavepackets, but instead describes these experi-
ments in terms of eigenstates and rate equations. The
rate equations are similar to those used to analyze

w xsteady-state experiments 13 , except that they take
the pulsed nature of the excitation into account via
time-dependent rate coefficients. These time-depen-
dent rates may be evaluated in terms of the overlap
of the Wigner representation of the laser pulse with
the molecular absorption and emission spectra, all
experimentally measurable quantities. Multiple levels
and coherence effects due to nonzero dephasing times
can be incorporated in a straightforward manner.
Example calculations on 4-level systems demonstrate
various effects recently observed in high-power
chirped pulse excitation of molecules in solution.

2. Theory

We begin with the 4-level system illustrated in
< :Fig. 1, where transitions occur between levels 0

< : < : < :and 3 and levels 1 and 2 . For the sake of
< : < :clarity, we neglect levels 1 and 2 for the time

< : < :being and consider only levels 0 and 3 . This
2-level system is described by the following optical
Bloch equations:

y1 i
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where T is the dephasing time, T is the population2 1
< : < :lifetime in level 3 before it relaxes to level 0 , D

is the detuning of the laser carrier frequency from
Ž .the resonance frequency, Ds ´ y´ y"v r3 0 laser

Ž .", m is the transition dipole moment, and E t
is the electric field in the rotating wave appro-

Ž Ž . Ž . Ž .ximation i.e., the full ´ t sE t exp yiv t q

Fig. 1. The 4-level system used in the calculations in this Letter,
with the time-dependent transistion rates derived in the text and
the relaxation rate G , which represents the Stokes shift.

) Ž . Ž ..E t exp qiv t . Assuming m to be real and con-
Ž .stant the Condon approximation , we integrate to

solve the equation for the off-diagonal matrix ele-
ment to obtain

`yim 1
X X

r t s d t exp y i Dq ty tŽ . Ž .H03 ž /" Ty` 2

=
X X XE t r t yr t , 4Ž . Ž . Ž . Ž .33 00

w xand make use of the identity 14

`
X Y1 t q t

X Y X X
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=
X X Yexp iv t y t , 5Ž . Ž .

Ž . Ž .where W t, v is the Wigner transform of E t ,

` t t
) w xW t , v s dt E ty E tq exp ivt .Ž . H ž / ž /2 2y`

6Ž .

The Wigner transform is a particularly useful repre-
sentation of the electric field, since it can be obtained

w xexperimentally 15 and provides a conceptual pic-
ture of the laser pulse structure jointly in time and

Ž . Ž .frequency space. Substituting Eqs. 4 and 5 into
Ž . XEq. 2 and performing the change of variables ts t

y tY, we obtain
2

` `ym 2 tyt
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=
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Ž .Eq. 7 is exact within the assumptions of the Bloch
equations. If instead we use the generalized Bloch

w xequations 16 , where 1rT is replaced by a stochas-2
Ž .tically varying frequency perturbation d t , we have

tyt
X Xexp ™ exp i d t d t , 8Ž . Ž .H¦ ;T 02

w xwhich is the absorption lineshape function 17,18 .
Thus this approach is valid beyond the Markovian
approximation inherent in the usual Bloch equations.
We now make the approximation that the decay of
the lineshape function, e.g. T , is much shorter than2

any relevant pulse dynamics. This is not the same as
assuming that T is much shorter than the transform2

limited pulse duration, since a chirped pulse may last
considerably longer in time. For a strongly chirped
pulse, even if it has the bandwidth of a very short
pulse, the frequency spectrum will evolve relatively
slowly in time and the approximation can still be
valid for appreciable dephasing times. By neglecting
the t variable when it is added or subtracted to a
larger number, and then performing the integral over
t , we obtain

2
`m

X X X
r t s dv W t , v A v r tŽ . Ž . Ž . Ž .˙ H33 03 332

p" y`

r tŽ .33
yr t y , 9Ž . Ž .00 T1

Ž .where A v is the Fourier transform of the lineshape
function, i.e. the absorption lineshape in frequency

Ž .space. We can now write Eq. 9 as the familiar-
looking rate equation,

r tŽ .33
r t sk t r t yr t y ,Ž . Ž . Ž . Ž .˙33 03 33 00 T1

10Ž .

Ž .where k t is the time-dependent transition rate,
given by

2
`m

X X Xk t s dv W t , v A v . 11Ž . Ž . Ž . Ž .H03 032
p" y`

As in earlier derivations of rate equations to describe
w xmonochromatic fields 13 , the key here is that in the

fast dephasing limit, the quantum coherences re-
spond instantaneously to the driving field and are

removed from the problem. This instantaneous re-
sponse of the coherences is also the basis of the
‘moving potential’ approach developed by Fainberg
to describe high-intensity experiments in dissipative

w xenvironments 12 .
It is straightforward to include effects due to a

longer T by expanding each time-dependent term in2

a Taylor series in t and then performing the integra-
tion over t . Such an approach has been shown to be
useful in analyzing the behavior of laser amplifiers
in the limit of narrow bandwidth, unchirped pulses
w x19 . We can also extend this analysis to multiple
levels coupled to each other through absorption,
emission, and relaxation, with the general result for

< :level i ,

N N N

r s k t r yr q G r y G r ,Ž . Ž .˙ Ý Ý Ýi i i j i j i i ji j j i j i i
j/i j/i j/i

14Ž .

Ž .where k t is proportional to the time-dependenti j

overlap of the pulse spectrum and the absorption
< : < :lineshape between levels i and j , and G repre-i j

< :sents the population relaxation rate from level i to
< :level j . Note that this reduces the problem of

solving N coupled optical Bloch equations to that of
solving N coupled rate equations.

Ž .While k t is in general a complicated functioni j

that must be evaluated numerically, for the sake of
clarity we will assume that both the laser field

Ž .spectrum E v and the molecular absorption and
Ž Ž . Ž . .emission spectra A v and F v , respectively are

Gaussian:

2 2 2E v s´ exp ys v q ibv , 15aŽ . Ž .L

22A v sexp ys vyD , 15bŽ . Ž . Ž .A A

22F v sexp ys vyD . 15cŽ . Ž . Ž .F F

The phase term ibv 2 results in a linearly chirped
pulse in the time domain,

2 2 21r2p ys t q ibt
E t s exp , 16Ž . Ž .2 4 2ž /s y ib 4 s qbŽ .
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with the Wigner transform,

3r2 22p tŽ .
W t , v s exp yŽ . 2½s 2sc

22y2s vyv t , 17aŽ . Ž .c 5
s 4 qb2

2s s , 17bŽ .c 2s

bt
v t s , 17cŽ . Ž .4 22 s qbŽ .

resulting in the analytical expression for the time-de-
pendent rate,

2 2 2'm 2 2 p t
2< <k t s ´ exp yŽ .03 2 22 2" 2s(s 2s qA cc

2 22s A btc 2y yD .2 2 4 2ž /2s qA 2 s qbŽ .c

In the rest of this Letter we show that these rate
equations are sufficient to describe some qualitative

w xfeatures of recent chirped pulse experiments 9–11 .
Fig. 2 shows the population left in the excited

< :state 2 after interaction with Gaussian pulses of
varying linear chirp. The frequency units are arbi-
trary, but may be taken to be psy1 to facilitate
comparison with experiment. In this case, the full-

Ž .width-half-maximum FWHM of the pulse spectrum
is 20 psy1, corresponding to a transform limited
pulsewidth of 22 fs. The largest chirp, bs0.01, then
results in a chirped pulsewidth of 2.5 ps. The absorp-

Ž .Ž . Ž .Žtion A v 0™3 transition and emission F v 2
.™1 transition spectra have FWHM of 60 and

detunings D s"30, respectively, from the cen-A, F

tral laser frequency. The vibrational relaxation rate G

is set to 100 psy1 and represents a very rapid Stokes
shift. The transition rate amplitude represents the

Ž 2 2 . < < 2product m rp" ´ and can be scaled by varying
either the transition dipole m or the field strength ´ .
We will assume that the amplitude is modified by
changing the field strength, which is most likely to
be the case experimentally. From Fig. 2a we see that

Ž .at the lowest-amplitude -intensity linear chirp has
no effect on the final amount of population deposited
in the excited state, in accordance with theoretical

w x wprediction 20 and experimental measurements 9–
x11 . As the pulse energy is increased by a factor of

10, a clear asymmetry with respect to chirp is ob-
served, with a positively chirped pulse leaving al-
most twice as many molecules in the excited state.
Another factor of 5 increase in the pulse energy
drives the system deeply into saturation, with the
positively chirped pulse resulting in almost 100%
inversion, while a negatively chirped pulse pumps
and then dumps almost 100% of the population. In
Fig. 2b we show curves for different vibrational
relaxation rates G for the intermediate transition
amplitude of 0.01. As G decreases, the curves lose

Ž . < :Fig. 2. a The chirp-dependent excited state population in level 2 left after excitation by chirped pulses with Gs100 and transition
Ž . Ž . Ž . Ž .amplitudes of 0.1 solid , 0.01 dashed , and 0.001 short-and-long dashed . b For the intermediate transition amplitude of 0.01, the effect

Ž . Ž .of different relaxation rates on the chirp dependence of the final excited state population is shown: Gs100 solid , Gs10 dashed , and
Ž .Gs1 short dashed .
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Ž . Ž .Fig. 3. a Time-dependent level populations during excitation with a negatively bsy0.005 chirped pulse. The transition amplitude is
< : < : < : < : Ž . Ž .0.01 and G is 10. The ground state levels are 0 and 1 , while the excited state levels are 2 and 3 . b Same as part a but for a

Ž .positively bs0.005 chirped pulse.

their step function appearance and the asymmetry
with chirp decreases. This is because as G de-

< :creases, population resides in state 3 for a longer
time and does not experience the change in energy
that allows it to avoid getting dumped back to the
ground state. With Gs1, the 4-level system looks
almost like a 2-level system on the timescale of the
pulses considered here. If the population stays in

< : Ž .state 3 after excitation, then only rate k t comes03

into play, and the rates of absorption and emission
are the same, as in traditional 2-level rate theory
w x13 .

To investigate the temporal evolution of the popu-
lations, we set the linear chirp bs"0.005. Nega-
tive and positive chirps are shown in Fig. 3a and b,
respectively. The populations in Fig. 3a clearly show
the pump–dump process occurring during the nega-
tively chirped pulse. The decrease and subsequent

< :recovery of the ground state 0 population coincides
exactly with the rise and fall of the excited state

< :population in state 2 . Fig. 3b shows that a posi-
tively chirped pulse only pumps population from the
ground state, without any dumping. There is not
100% population transfer because the bandwidth of
the pulse is narrower than the absorption spectrum
w x < :21,22 . The transient populations in states 1 and
< :3 are also shown. Note that both positively and
negatively chirped pulses excite the same amount of

< :population into state 3 , but that only the negatively
< :chirped pulse creates appreciable population in 1

via stimulated emission.

The increased inversion with positive chirp recalls
w xthe molecular p pulse 21,22 , where a high-energy,

broadband, positively chirped pulse was shown to be
able to invert the molecular population. That work
took the full quantum dynamics into account, includ-
ing the electronic and vibrational coherences, and
relied on a combination of wavepacket motion and
adiabatic passage to achieve inversion. The present
calculations ignore all coherences and hence those
two effects cannot play a role. Instead, it is the rapid,

< :irreversible relaxation to level 2 that results in the
chirp dependence and inversion with positive chirp.
Although different in the details, the fundamental
idea in both the present work and the theory of the
molecular p pulse is the same: initially excited
population moves to lower energies and out of reso-
nance with the trailing high-frequency components
of the positively chirped pulse so that it cannot
undergo stimulated emission back to the ground
state. This motion may result from either incoherent
relaxation or coherent wavepacket motion.

3. Conclusions

In conclusion, we have derived a theory of
strong-field-pulsed optical excitation of molecules in
condensed media based on rate equations with time-
dependent coefficients. It allows for at least a quali-
tative understanding of recent quantum control ex-
periments involving electronic state population trans-
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w xfer in large molecules in the condensed phase 9–11 ,
and provides a framework for the quantitative com-
parison of theory and experiment. The coupled dif-
ferential equations resulting from the theory can be
easily solved, with the only inputs being the absorp-
tion and emission spectra and the Wigner transform
of the electric field, all of which can be measured
experimentally. The theory can be extended to take
finite dephasing rates and multiple levels into ac-
count. This theoretical approach may be useful for
the design and optimization of molecular sensors
whose optical properties change in response to their

w xlocal environment, such as pH 23 , or for the design
of laser fields that can optimally drive multiphoton

w xphotochemistry 24 or molecular optical switches
w x25 .
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