Quantum control of dissipative systems: Exact solutions
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Optimal quantum control theory, which predicts the tailored light fields that best drive a system to
a desired target, is applied to the quantum dissipative dynamics of systems linearly coupled to a
Gaussian bath. To calculate the material response function required for optimizing the light field, the
analytical solution is derived for the two-level Brownian harmonic oscillator model and the recently
developed method for directly simulating the Gaussian force is implemented for anharmonic
Brownian oscillators. This study confirms the feasibility of quantum control in favorable condensed
phase environments and explores new quantum control features in the presence of dissipation,
including memory effects and temperature dependencel9@7 American Institute of Physics.
[S0021-960697)51103-2

I. INTRODUCTION: QUANTUM CONTROL OF |g) and an excited stat¢e), described by two diabatic
DISSIPATIVE SYSTEMS Hamiltonians,Hy and He+7%weg), respectively. The elec-

tric field is treated classically as
Recent theoretical and experimental progress in quantum .

control has demonstrated the possibility of driving matter ~ €(t) =E(t)e™“ed + E* (t)e'ed, 1.1
toward a specific goal with tailored laser fiefd€. Theoreti- with we, being the transition frequency between the two
cal tool§~**have been developed to predict an optimal laseklectronic states, which is assumed to be much larger than
field to drive a quantum wave packet to a desired functionahe vibrational energy spacings. Within the rotating wave

form at a chosen time, and this type of quantum control hagpproximation, the coupled matter and field Hamiltonian is
been experimentally realized in gas phase and condensgglen by

phase samplers and applied to the control of the products of

a chemical reactiof”4~18n the future we can expecttosee ~ H(D=Hu+Hin, 1.2
further exploration of quantum control of more complicated\yhere the molecular term iy =Hglg)(g| +Hele)(e| and
and realistic systems, such as polyatomic molecules, clusterg,e interaction term s Hin=—pE(t)|g)e]

solvated particles, crystals, etc. Theoretically, the challenge. ;£ (t)|e)(g|, with u being the transition dipole moment.

lies in the numerical difficulties of quantum dynamical cal- The density matrix of the molecular system obeys the Liou-
culations of many degrees-of-freedom systems. Various aRjjlle equation of motion

proximate approaches for wave packet propagation have d .
been used to implement the equations of quantum control p(t) _ ! i
theory, including Gaussian wave pack@&wp),"8 time- dt pLHOp(O]==12(0p(0), (1.3
19 H 12,15,16
dependent Hartre®DH), “ nearly classicalNC), and where 7 is the Liouville operator. The evolution of the den-

stochastic batliSB)." Although a start has been made, the sity matrix p(t) as described by the above equation contains
guantum control of dissipative systems has not been ana- Y (1) y q

. . ) . i all the information about the system.
lyzed in a fully systematic and rigorous fashion. In this pa- .
. In general, the target of quantum control can be specified
per, a condensed phase system is reduced to a one-

. . . as an operatoh and the degree of control is measured by the
dimensional system which represents the degree of freedo@xpectation value of this target operator at titpe2 or ex-
associated with the target and a Gaussian bath which in-IiCitI
cludes the infinite degrees of freedom of the environment” 'Y
Although simplified, this stochastic model can be solved ac-  A(t;)=Tr[Ap(ts)]. 1.9

curately and the results thus obtained characterize the general . o

properties of condensed phase quantum control. In the weak response regime, the analysis is simplified by

To begin, we briefly review the theoretical formulation linearizing the .Li_o_uville o_perator.in_termg, of the field. As-
of an optimal weak control field for driving a dissipative sume that the initial density matrix is defined on the ground

molecule to a desired target. Although most results here ha ate,pq, and the targgt operator is defined on the excited
been given previousl§11-132°2khe emphasis of this section state,A; then the leading term of the expectation value of

is the formulation of weak optical field control of dissipative the target i¥’

systems. t tf .
. . — ! ’ !
Consider a molecule coupled to a time-dependent elec-  Altf)= fo dtfo dt'E* (H)M(t,t")E(t"), (1.9
tric field via a dipole interaction. For simplicity, the molecu-
lar system consists of two electronic states, a ground state@here the material response function matvixis defined as
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1 ) ) o sipation in more general situations. An accurate and general
M(t,t)= 22 Tr{Age™ Heli™t) ye™ Mot p el numerical algorithm for simulating quantum dissipation is
not now available, nor is it expected in the near future.

X peHeti=v], (1.6)  Therefore, a linearized quantum dissipation model, termed

. , ' . : the Gaussian bath model, has become the subject of many

miz;-sh Eih%O?Ie;iztgtig:do?nsﬁé:lerg atla];lgeleﬂt(gn(\;vehrw:e:;ﬁl Congnalytlca ! and numericdf—° stud|g s

straints. To this end, we construct a functional as The Gaussian ba.th model Con.SIStS O.f a system degree-
' ' of-freedomqg and N linear harmonic oscillatorgx;}, de-

scribed by the Hamiltonian

t
)=t - [ e[t 7

H= 1mi;12+V(q)+ % L s
where the Lagrange multipliex is introduced to lift the 2 =2
constraint on the total radiation energy. Rigorously, the op- 5
timization of the field can be achieved by a variational dif- n Emw? X — Ci q (1.10
ferentiation of the functional(t;) with respect to the field, 2 N M) ’

I
8J(t;)/ SE* (1)=0. In the weak response regime, application

of the variational procedure results in a linear field equatiofVhereV(q) is the potential as a function af,x; is theith
Gaussian bath normal modey is the massw, is the har-

monic frequency, and; is the coupling strength. It was
shown by Zwanzi¢f that the elimination of the bath modes
from the equations of motion for the above Hamiltonian

which can be solved as a conventional eigenvalue problemyie|ds the generalized Langevin equati@®LE)
A yield function? a measure of how well the goal is

reached,

)\E(t):foth(t,t’)E(t’)dt’, (1.9

d t .
mo(t)+ d—qV[q(t)]+ fo p(t—t")q(t")dt’' =F(t),
(1.9 (111

where F(t) is the random force anth is the mass of the

is introduced, which has the same value as the eigenvaluguantum particle. The dynamical friction coefficienft) is
N\ when evaluated for the optimized field computed from Eq.then identified as
(1.9). This is the expectation value of the target per molecu-

e N 2
lar per unit incident pulse energy. It then follows that for a B E Ci

n =
i=1

_ A(ty)
IR

2 o
cog wit)= ;fo dw? cog wt),

given molecular system and a given target, the eigenvector miwi2

corresponding to the largest eigenvalue is the globally opti- (1.12
mal field which achieves the maximum yield relative to any

nonoptimized pulses with the same pulse enéfgy. where J(w) is the spectral density, defined in the discrete

The above formulation in Liouville space is applicable to limit by
many-body systems, mixed states, thermal canonical en- N
sembles, providing sufficient flexibility to include a broad J(w):ZE
range of experimental consideratioidn particular, the sol- 2{=1 Mo,

vent influences on wavepacket focusing in the condensedh dom b licit di  th
phase can be investigated within this framework. In practice:r 1€ random force can be exp |c!ty expressed in terms of the
itial conditions of the bath variables. Therefore, under the

an interesting scenario is to define a target on the degree gt

freedom of interest so that only the dynamics projected omgssumption thg.t the in.itial bath distribution in phase space is
this reduced space is relevant and the dynamics of the of?) thermal equilibrium in the presence of the system, one can

thogonal space is treated as dissipation. In other words, dighow that

sipation arises from the coupling of a system .to an |nf|n|t_e 2(t) = B(F(1)F(0)), (1.14

number of degrees of freedom of a bath, which results in

time irreversible dynamics of the system. It is interesting andvhere the equilibrium conditioqF)=0 is implied. The in-

useful to examine the effects of such irreversible dynamicgroduction of the spectral densit){ ) makes it possible to

on wavepacket focusing. pass from a discrete set of modes to a continuum spectrum,
The major challenge to such a many-atom study lies irand hence to represent an arbitrary time-dependent friction

the numerical implementation of quantum control theory fory(t). The relation in Eq(1.14 holds for a Gaussian bath

dissipative systems, because the difficulty of quantum dyregardless of the form of the potential of mean force. It is for

namics  calculations increases enormously  withthis reason that the Gaussian bath is an attractive analytical

dimensionality?>~2” Accurate methods, such as basis set exmodel to study the solvent frictional effects on vibrational

pansions and path integral calculations of real time correlarelaxation and activated reaction dynamics.

tion functions, are limited to a few degrees of freedom and  The Gaussian bath can be easily quantized to represent

short time dynamics, and are thus incapable of treating disguantum dissipation and thereby can serve as a prototype for

2
— S(w—w)). (1.13
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formulating quantum Brownian motion, dissipative tunnel-whereq, and p. represent the center of the target in phase
ing, solvent-induced electron transfer, and other quanturspace, withW, andW, being the widths of the target. Then,
processes in the condensed phase. It is therefore the focusgiffen Eq.(A 8) and assuming a constant transition dipole
this paper to calculate the material response function of amomentu=1, the material response function is expressed as
guantum system which is linearly coupled to a Gaussian

bath!! To this end, the analytical solution of the Brownian (tt') = 1

oscillator is derived in Sec. Il and the simulation scheme o o 27r\/(Wq+<q2>)(Wp+(p2>)

dissipative systems proposed by Cao, Ungar, and ¥fdsh

reviewed in Sec. IIl. Results based on these two methods are y ;{_ (ge+d—a(t)?  (pc—P(ty)? N ¢
presented in Sec IV and a discussion in Sec. V concludes the 2(Wq+<q2)) 2(Wp+<p2)) fl
paper. 2.5
Here, the dynamical parametegt),p(t), and ¢ as defined
Il. A SOLVABLE MODEL: THE TWO-LEVEL by Egs.(A9)—(A11) and the equilibrium parameters)?)
BROWNIAN OSCILLATOR SYSTEM and(p?) as defined by EqgA14) and (A15) will be speci-

One of the well-studied analytical models is the dis_fied for the material response function in the following.

placed two-level Brownian oscillator system, which has been 10 Start, the potential difference of the Hamiltonian in
solved semi-classically by Yan and Mukarffeind quantum EQ- (2.3 of the displaced harmonic oscillator is
mechanically by Tanimura and Mukam&lOur derivation H'=H—Hy=—fx+fd, (2.6)
of the quantum propagator of the displaced Brownian oscil-
lator sketched in Appendix A is both mathematically simpleWith f=mw3d. According to the definition of the material
and physically intuitive. This result has recently been used téesponse function, the time-dependent potential difference in
rederive the Marcus’s electron transfer rate formula based oRd. (A2) is determined in a piecewise fashion by
the exact electronic dynamid$ Quantum control with such f+(t)=f_()=U_(t)=0, if Ost<ty;f, (1)=Ff_(t)=f,
a model has previously been studied by Yemnaf! semi- U-=fd/2,if t;<t<ty; and f (t)=2f,f_(t)=U_(t)=0,
classically and will be further investigated in this sectionif to<t<t;. Then the dynamical parameters defined in the
with the help of the quantum propagator. Eq. (A9)—(A11) can be explicitly written as

The two-level Brownian oscillator model has been popu- f Im y
larized as a primary analytically solvable model to describe  q(t;)= 2—f dwo ——{2—cog wt]) — cog wt5)
the electronic absorption line shape and various nonlinear m w

spectra in condensed phadé&“°in this model, both the +i coth(b/2)[sin(wt}) —sin(wty)]}, 2.7
molecular system and the thermal bath consist of harmonic
oscillators: _ mf Im x . ) ] ,
_ p(tf)=zj do " {sin(wt;) +sin(wt5)
H.=imd?+ mwig?, (2.2
. +i coth(b/2)[ cog wt;) —cog wt,)]}, (2.9
Hg=mef + ima?(q—d)? @2 1 o
and
and
f2 |
H=Hg|g)(g|+Hele)(el ¢(tf)=zf do rT;2)‘{i coth(b/2)
N mx? m-w-z( ¢ |\’
FO | =+ —— | xi— ——>q] |. (2.3 X[1-cos w(t,—ty)]—sinw(t,—t)]}, (2.9
=1 ) 2 |7 mof

wheret; =t;—t;,t;=t;—t,, and Imy is the imaginary part
of the linear response function.
For an exponential decay frictional kernel defined as

Here,q is the Brownian oscillator coordinate, with its bare
frequency wy and harmonic displacement, and the set
{x;} constitutes the bath modes, with frequencigs},
massegm;}, and coupling constantss;}. In Appendix A, n=noDe Pt (2.10

we illustrate that the quantum propagator of the Brownian . : . -
oscillator defined above can be solved in a closed formW'th D being the decay constant ang being the friction

which is most conveniently expressed in Wigner phase spacéetrength’ the linear response function in £418) becomes

as in Eq.(A8). 1
To obtain an analytical expression for the response func- Xx(®)=

tion, we assume a Gaussian target in the excited electronic
state, defined in the Wigner phase space representation aswhich in the limit of D— reduces to the response function
1 ) ) of an Ohmic frictign. Given the Laplace transformation of
AL(q.p)= exp{—(q 9" (P—Pc) , the friction kernel7(s)= 7,D/(D+s), the equilibrium pa-
27 WoW, 2W, 2W, rameter q%) and(p?) defined in Eqs(A14) and(A15) can

(2.4  be evaluated numerically.

mM(w5— w?)—iwnD/(D—iw)’ (219
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Previously, within the framework of semi-classical classical propagatiofr*® centroid molecular dynamiég,
propagation, Yaret all! have calculated the globally opti- etc. Averaging the time-dependent system quantities over the
mal fields and the corresponding yield for the same Hamilbath variables yields the desired physical quantities of the
tonian as in Eq(2.3). Apparently because of the nature of quantum system-bath Hamiltonian. This procedure thus pro-
the semi-classical approximation, their expression of the mavides a large array of possibilities for simulating quantum
terial response function in Eq60) of Yan et al!! differs  dynamical evolution of dissipative systems.
from the exact expression in E.5 in the following two To begin, the Hamiltonian in Eq2.3) is rewritten as
aspects. The Gaussian width givenrais1/2 by Yanet al!
does not include the dissipation effects as in the definitions 1= Hb(X¥)+Ve(X,q) +Hs(a), (3.9)

of (q?) and(p?) given by Eqs.(A14) and (A15). Also, the  \yhereH,(x) is the bath Hamiltonian
Gaussian bath given by Yaet al! is not fully quantized as

in Eq. (A 16). Nevertheless, at least qualitatively, their con- N pi2 2 2
clusions derived from the semi-classical formula agree well Hb=i21 2_mi+ 5 M@y, (3.2
with our analysis.
V.(x,q) is the coupling potential
Ill. DIRECT SIMULATION OF DISSIPATIVE DYNAMICS N
Our algorithm for calculating the material response func-  V.(x,q)= —21 CiXid, (3.3
=

tions for dissipative systems is based on a novel simulation

method published recentf§.The approach is derived from a andH(q) is the system Hamiltonian
very simple idea: since the bath actions are quadratic and

thus the functional integrand of the Gaussian bath in the N ¢,

discretized form is a multidimensional complex Gaussian Hs(q)=Hg|g><g|+He|e>(e|+izl EWRLE (3.4
function, the bath average can be carried out by direct Monte - o

Carlo sampling. Given a bath path generated by the Gaussvith the last term being the counter potential.

ians, the system can be propagated under the influence of the Assuming the physical quantity of intereStis a func-
time-dependent fluctuating bath force through any method dfion of the system variables only, one can then express this
choice, such as matrix or tensor multiplicatiorf! split op-  quantity in terms of a bath average definedths indexi for
erator propagatiof? wave packet dynamié§;** semi- bath variables implied

2

[ dxy dxg dxg [ OxG(D) Zxp(t) DX IFX4(), Xp(1) X5(7)]€™ S/

FIx¢(t),Xp(t),Xg(7) b= - - - (3.9
(Flxe o0 Xg(D)])s Jdxg dxy X3 [ O%e(t) Ixp(t) Pxp( 7)€ S/
|
Here, S is the summation of actions evaluated along the 1 U fax(] dth
closed path, explicitly given as M(t,t")= (T A e et
- . . . .
S=Sg[xg(m)]—iS[Xe(1)]+iS[X(1)], (3.6 xe Mot g[q,x(1)] di/fipg ey Halaxs(vl avh
whereS[ x;(t)] is the real time action functional for the for- xe Wo'H[q,xp(1)] dt/fy, (3.7

ward pathx;(t),S[x,(t)] is the real time action functional

for the backward path,(t), andSg[x(7)] is the imaginary ~ where the operator& andp, are evaluated at the final time

time action functional for the thermal patty(7). In addi-  t; and the initial time 0, respectively. In the above equation,

tion, the bath configuration is understood as followgt) is  H[q,x¢(t) ]=Hq(aq) + V[ x:(t),q] and H[q,x,(t) ]=Hq(q)

the forward path satisfying the boundary conditions+ V[xg(t),q] are the time-dependent system Hamiltonians

X¢(0)=xq1 and x;(tf) =X3,Xp(t) is the backward path satis- evolving under the influence of the Gaussian force, the Tr

fying the boundary conditiong,(0)=x, and x,(t)=X3,  symbol denotes a trace over the system variables, and the

andxg(7) is the imaginary time path satisfying the boundary exponential operators are understood as being time-ordered

conditionsx5(0)=x; andxg(% 8) =X,, so that a closed trace products.

path is formed for the thermal averaged real time propaga- As has been argued, the quadratic functional in(B)

tion for t=0 tot=t; at temperatures. can be diagonalized, giving rise to Gaussian functionals with
With the introduction of the bath average, the formalcomplex eigenvalues and through a coordinate rotation the

expression of a physical quantity of the system can be simbath average can be sampled by the direct Monte Carlo

plified enormously. In particular, the material response funcimethod. The details of the diagonalization and coordinate

tion of Eq.(1.6) is now expressed &settingu=1) rotation are explained by Caat al*® and in Appendix B.
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For our purpose, the material response function as ex-
pressed by Eq(3.7) is evaluated through the split operator
propagation with the help of the fast Fourier transform
(FFT). In the case that the target is a pure state, it is benefi-
cial to propagate the target wave function backward in time i
because the dimension of a wave function is half the dimen- 06 |-
sion of the corresponding density matrix. . i

With the above development in hand, we can simulate” 4 [
the dynamics of a quantum system interacting with a Gauss- I
ian bath. The procedure is described as follows:

— — =Ohmic, T=1 i
NonohmicD =1, T=1] |

Yield

0.2 -

(1) Choose a finite set of linear harmonic oscillators to rep- I -
resent the Gaussian bath. Care must be taken to avoid o Lo 0000 0 T
nonergodicity of the bath for the time period of interest. 0 02 0.4 0.6 0.8 1

(2) For each mode, sample the three terminal points accord- n,

ing to Eq.(B2) and generate the three paths according to
Eqg. (B9). The quantum fluctuating force is the superpo-FIG. 1. The quantum yield, Eq1.9), of the Brownian oscillator defined by
sition of the contributions from all modes. Eq. (2.3 as a function of the friction strength, for Ohmic and non-Ohmic

3) Th ¢ t . ted der the infl frictions atB=1. The friction kernel assumes the form of exponential decay
3) € quf"m um system IS propagated under the in uencgs defined by Eq(2.10 with D=9 for Ohmic friction andD=1 for non-

of the time-dependent complex quantum force, and th&nmic friction.

guantity of interest is computed.
(4) Steps(2) and(3) are repeated for many independent bath

configurations. The bath averaged quantity represents the

quantum dynamical measurement under the dissipativgve friction strength of non-Ohmic friction is much smaller
environment. than that of Ohmic friction, although the integrated friction

strengthz is the same.
The above calculation of the quantum yield in the pres-
ence of dissipation is significantly underestimated for the
The methods described in the previous two sectiondollowing reasons. First, the width of the Brownian oscillator
make it possible to thoroughly investigate the various factor¢g?) in coordinate space decreases with friction strength,
present in the quantum control of condensed phase systemshereas its width p?) in momentum space increases with
such as temperature, friction, and memory effects. The andriction strength. Consequently, a minimum uncertainty
lytical solution of the Brownian oscillator is used to demon- wavepacket withW,=W,=0.5 is no longer a reasonable
strate the feasibility of control under condensed phase cortarget when thermal fluctuations and dissipation are present.
ditions, while the numerical calculation of a dissipative It is evident from Eq(A14) that the spatial spreading of the
anharmonic oscillator is used to predict characteristidBrownian oscillatorq?) decreases with the frictior, and
changes in the globally optimal field introduced by the con-this decrease is much more significant at low temperature
densed phase environment. than at high temperature where the thermal spreading be-
The first example is the two-level Brownian oscillator comes dominant.
defined by Eq. (2.3 with parameters assigned as Second, a well-focused wave packet moves along a very
m=1%s=1wy,=1,d=5. The target is set afj;=5,p,=0, different trajectory in phase space rather than a dissipative
andt;=5 with Gaussian width§V,=0.5 andW,=0.5. The = wavepacket. According to our previous model analgstbe
dynamical friction kernel assumes the form of an exponentiatenter of a focused wave packet in a nondissipative system
decay function as defined in ER.10 with D=1 for non-  obeys the classical equation of motion such that its trajectory
Ohmic friction andD =<0 for Ohmic friction. First, the ma- lies on a constant energy surface in phase space. In the pres-
terial response function was evaluated according to(E§) ence of dissipation, the initially excited system will lose en-
on a time grid with a time discretization of 0.1. The dis- ergy while approaching thermal equilibrium. Therefore, a
cretized material response matrix was then diagonalized giwveasonable target for a conserved system, which satisfies the
ing the yield as the maximum eigenvalue and the globallyenergy conservation law, will become difficult to achieve for
optimal field as the corresponding eigenvector. a dissipative system, and the optimal light field for a dissi-
In Fig. 1, the quantum yield defined by Ed.9) is plot-  pative system will need to impart more initial energy to a
ted as a function of the friction strengthy for Ohmic and  wavepacket than the target energy, as has been observed in
non-Ohmic friction at an inverse temperatyse=1. While  previous nearly classical control simulaticiisAs an ex-
both curves show the dramatic decrease of the yield becausenple, the quantum yield is plotted in Fig. 2 as a function of
of the increase in friction, the non-Ohmic dissipative systenthe target momenturp.. at a fixed target positioq.=4 at
clearly has a higher yield than the Ohmic dissipative systemzero temperature for the displaced oscillator described ear-
This enhancement of the yield is due to memory effectslier. For the simple displaced oscillator, two peaks at
Since an oscillator interacts with the environment dynami{p.=*3 are observed, as expected from energy conserva-
cally only through the resonant mode of the bath, the effection. However, with a friction of the form of Eq1.10 with

IV. RESULTS AND DISCUSSION
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FIG. 2. The quantum yield, E@1.9), as a function of the target momentum
p. for the same dissipative and nondissipative Brownian oscillators as de-
scribed for Fig. 1. The spatial center of the target wave function is fixed at 1 25
q.=3.
4 20
' W
an exponential decay kernel Bf=1 and#y= 0.5, the maxi- g 1 15
mum yield is achieved with zero momentum. In fact, for this
Brownian oscillator, so much energy has been lost to the 1
bath that the center of the wavepacket can no longer reach s
the target.
For the second example, to demonstrate dissipative ef- ; ; . o
fects on the globally optimal field, we employ a quartic po- 05 1 15
tential for the excited state,
b Ti
Vo= 52+ 6(x)gx", 4y ® ime
with g=—0.003 and a displaced harmonic potential for theFIG. 3. Contour plots of the Wigner transformations of the optimal fields for
ground state the anharmonic oscillator Eq¢4.1) at 8=, without friction (a) and with
exponential decay frictiofib).
1
Vg=3(x+0d)?, (4.2
with d=5. Here, the Heaviside function is defined as
0(x)=1 forx=0 andd(x)=0 for x<0, and again unit val- o _
ues are assumed for mass, frequency, and the Planck con- F(t,0)= dre'“TE* (t+ 7/2)E(t— 1/2), 4.3

—o0

stant. The system is initially in thermal equilibrium on the
ground electronic state. The target wave function is a miniwhich reduces to the power spectryi(w)|? when inte-
mum uncertainty wavepackei=|¢:){¢#¢| on the excited grated over the time variable and reduces to the temporal
electronic state aj,=5 andp.=—2, and the target time is field strength|E(t)|?> when integrated over the frequency
t;=5. The dissipation assumes the exponential decay formariable. Roughly speaking, the slope on ¢, ») contour
as in Eq.(2.10 with 73=0.1 andD=1.0. diagram, defined as the tangent formed by the time axis and
As described earlier, the direct Monte Carlo sampling ofthe principle axis of the contour rotated from the time axis, is
the Gaussian force can be incorporated into the computatioproportional to the linear chirp rafé.
of the material response function defined in E8.7). In The contour plots of the Wigner transformations of the
order to reproduce the bath fluctuations as the time of intereptimal fields at zero temperature are compared for the non-
est, 20 harmonic oscillators were employed with frequencieslissipative anharmonic oscillator in Fig@ and for the dis-
evenly distributed fromw=0 to w=5. The target wave sipative anharmonic oscillator in Fig(l8. As can be seen
function was propagated backward under the complex batfrom the results, once dissipation is introduced, the carrier
force through the split operator method with a time step offrequency increases, the linear chirp rate increases, and the
0.1 and a spatial grid of 128 points. WhentatO, both the time between the excitation and the target is shortened.
target wave function and its corresponding complex conjuThese effects have been observed in a earlier nearly classical
gate were integrated with the ground state density matrisimulation of the optimal quantum control of photodisso-
pg in coordinate space. This procedure was averaged oveiation in liquid density argor?*® Clearly, the increase of
10* independent bath configurations to reach convergence dhe carrier frequency is the consequence of energy loss to the

the material response function. bath, and the decrease of the travel time of the wavepacket is
The optimal fields computed from E(.8) are then rep- the result of the lowering of the position of the outer turning
resented in the Wigner transformatfémlefined as point due to the dissipation. The change in the linear chirp
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ture is raised, the optimal field for the dissipative oscillator
changes significantly, whereas the optimal field for the non-
dissipative oscillator remains virtually the same. As argued
beforel! a nondissipative system at nonzero temperatures
can be treated as a weighted superposition of energy eigen-
states. Thus, the optimization procedure leads to the maximi-
zation of the quantum vyield for the most populated energy
eigenstate while ignoring the other states. Consequently, the
optimal field of a nondissipative system has a weak depen-
dence on temperature. However, the above argument is in-
valid for the dissipative system because the wave function
description is incapable of including relaxation, in particular
pure dephasing. In fact, the evolution of the density matrix is
strongly influenced by the dissipation, which in turn depends
strongly on temperature. As a result, the optimal field for a
dissipative system changes drastically with temperature.

15

Frequency

10

5 V. CONCLUSIONS

In this paper, the optimal control fields of two dissipative
systems are solved exactly. the results not only confirm the
findings in previous papets®®~*"but also provide new in-
sight into the feasibility and characteristics of quantum con-
trol in condensed phases. In summary, the following conclu-
sions can be drawn based on our case studies:

Frequency

1 1 1 0

05 ) 15 (1) Although dissipation reduces the quantum yield, the glo-

bally optimal field can still lead to a significant amount
of control of the dissipative system. The quantity of con-
trol depends on the strength of the friction as well as the

Time

(b)

FIG. 4. The same plots of the Wigner transformations of the optimal fields
as described for Fig. 3 except for gt=1, without friction (a) and with
exponential decay frictioiib).

)

rate can be explained from the point of view of energy re-
laxation. As demonstrated in a previous paflethe chirp
required to focus a wave packet is directly proportional to
the energy dispersion, which changes as a consequence of
dissipation.

It is interesting to note that some of the dissipative ef-(3)
fects described above have also been observed in the calcu-
lations of a two-dimensional system, i.e, a system degree of
freedom plus a harmonic oscillatbt.It should be pointed
out, however, that we attribute the changes in the optimal
fields to the dissipative effects instead of to caging effects
since, by use of the counter potential term of Eg10, the
caging phenomena commonly found in solutions is not pre{4)
sented in the potential of mean fore€q). In the paper by
Messina'® the time-dependent Hartree approximation is
shown to be of sufficient accuracy for the control period,
indicating the possibilities that this approximation may be
appropriate for larger systems. The numerical results of these

functional form of the memory kernel. A non-Ohmic
bath results in higher quantum yields than an Ohmic bath
at the same integrated strength.

In general, quantum yields also depend on the desired
target, since targets which are reachable on classical tra-
jectories are more achievable. Since the equilibrium and
dynamical properties of dissipative systems are different
from those of conserved systems, the target wave func-
tion should be modified accordingly, if higher yield is
desired.

Dissipative effects on the globally optimal fields are ob-
served: increase in carrier frequency, increase in linear
chirp rate, shortening in pulse duration, and broadening
in bandwidth, confirming the conclusions of earlier
Gaussian wave packéGWP),1"*8 time-dependent Har-
tree (TDH),'® nearly classicalNC)21>%and stochastic
bath (SB)*! simulations.

Temperature effects on globally optimal fields are more
drastic for dissipative systems than for nondissipative
systems.

It remains a question how well a stochastic model based

simulations also suggest that some control may survive ovesn the generalized Langevin equation in Ef.11) can de-
a short time period in the presence of relatively strong dissiscribe a condensed phase environment and how a realistic

pation.

spectral density can be obtained which best represents the

Finally, Fig. 4 is the contour plot of the Wigner trans- environment. From a simplistic point of view, as long as the

formation of the optimal field aB=1 to be compared with

total system can be divided into a bath and a reduced system,

Fig. 3 of the same plot g8=<. Clearly, when the tempera- such that the effects of the bath result in irreversible dynam-
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ics of the reduced system and the effects of the reduced To start, considering a frictionless harmonic oscillator
degrees of freedom on the bath dynamics are negligible, thisropagated with a time-dependent force, we can rewrite the
stochastic view of many-body dynamics is justified. Mean-forward propagator as

while, from a practical point of view, if the generalized A ‘ .

Langevin dynamics with a friction kernel calculated from the G (t)=T ex;{iJ’ fL(t)a(t—t")/A dt’ |exp[—iHot/%]
fluctuation-dissipation relation Eq1.14 reproduces the 0

physical quantities of interest, the accuracy of the Gaussian _ LA A A
bath model is verified. Following this line, we have recently _Aequ(an_pr)]eXd_'Hot/h]' (A4)
performed classical dynamics simulations of excited iodinewvhereT is the time ordering operator, and parametgrand
molecules in argon matrices and have confirmed the Gaus®; are defined as

ian bath model based on a coordinate dependent friction ker- .

nel computed from force—force correlation functions. It aL:_J fL(t")cog wo(t—t')] dt’, (A5)
would be interesting to carry out a full quantum dissipative o

simulation and to solve for the globally optimal control field.

t
bL:mwOﬁfofL(t )Sll’[wo(t—t )] dt’. (A6)
APPENDIX A: PROPAGATION OF A TWO-LEVEL Similar relations hold for the backward propagation. Then,
BROWNIAN OSCILLATOR making use of the operator identities e&p(B)

= eprexpéexp—[A,é]/Z and  exptiHgt/i)peq

In this section, we will derive the quantum propagator of . exp(Hot/#1) = peq, We arrive at

a two-level Brownian oscillator in Liouville space. The final _ _
result is the same as the Liouville space generation func-  p(dy,0y,t)=€'(3PL~3rRPR)2 gi(aLd1~agds)
tional introduced by Mukamel and co-workefs and has

been applied to a wide range of problems. However, the XPeq(d1~bL .42~ bg). (A7)
derivation presented here is simple in mathematical deriva- This result is better expressed in the Wigner representa-
tion and intuitive in physical reasoning. tion as

To begin, we assume thermal equilibrium on one of the 1 1 12 [q—a(t)]2
diabatic states and define the difference of the two diabatic  w(q,p,t)= _(ﬂ xp[ ——
surfaces as 2\ (a°)(P°) 2(q°)

~ ~ _h(t)12

H' =-fq+U, (A1) _—[p2<|£;(2t>)] +i¢)(t)/h], (A8)

whereU is the difference of potential energies ahds the
difference of force constants. The propagation of the twowhere(g®) and(p®) are the equilibrium mean square fluc-
level Brownian oscillator can be written as tuations of position and momentum, respectively, and other
variables are given as

R - (A"
G(t):'go(_l) %) Wt):f;cz(t—t’)f+(t’)+icl(t—t’)f,(t’)dt’, (A9)
t t, th_1 t L .
xfo dtnfo dtn_lf0 dty_5... 02 dt, p(t)=ma(t), (A10)
. and
—i | [Ho+H'(t)]/% dt'}, A2
Xexﬂ’ |j0[ o] ] (A2) ¢(t)=—fotu,(t’)dt’+f;f,(t’)d(t’)dt’. (A11)

where the time-dependent functidd’(t’) is defined in ) )

piecewise fashion a#l’(t')=H’ for t,<t'<t,,, and Here,cy(t) andcy(t) are the real and imaginary parts of the
H'(t')=0 for ty_;<t'<t,. The central quantity is the harmonic oscillator correlation function written as
propagator of a f_orc.:ed.harmonic oscillator, which interms of ¢ty =#[c,(t)—icy(t)]

the density matrix is given by

fi
~ A A = th( /2 t)—i si t)].
p(t):eXF{_if HL(t,)/ﬁdt,}peq zmwo[co I"( IBwO )Coiwo ) I Sm(wo )]
0
(A12)
xexp{i ftI:IR(t’)/ﬁdt’} Also, f,=f +fgrandf_=f_—fg are the sum and the dif-
0 ference of the force constants, respectively, &hd and

2 ~ 2 U, are defined in a similar way.
= GL(D)pedGr(Y), (A3) Although the above results are given for a single har-
with the subscriptd andR denoting forward and backward monic oscillator, the generalization to a set of uncoupled
propagations, or, left and right propagations, respectively. harmonic oscillators is straightforward and requires little
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modification. A more interesting situation is a two-level 0s-S(x;,x,,x3)/%

cillator which couples linearly to an infinite set of bath os-

cillators as described in Egs. 2.2-3). One can in principle =[Sa(X1,%2,8) —1S¢(Xq,X3,1) +iSp(X2,X3,1) 1/ 72
project out the dynamics on the original coordinate of the

Brownian oscillator by diagonalizing the force constant ma- 1

trix of the oscillator-bath potential, given in the mass-scaled = ~xSx= ————————[(x?+x3) — 2X;X,c0sH wfi 3)]
coordinates as 2 2f sinf(wh )" "1 72

wi+co Cf...cH o L

c; w;...0 ) Sir\(wtf)[(xl+x3)_lex3 coqwty)]

K= .. s (A13)
Mo
(o 0...0 Fi— 2,32
N N 'S7 Sin(wtf)[(xz X3) —2XoX3 cog wtf)],

wherec] =¢;/\w; andco=3¢;/wf (B1)
Evidently, the final expression will retain the same func-
tional form as Eq.(A8) and one simply has to find corre- wherex=(x;,X,,X3) is a three-dimensional vector afds a
sponding expressions fég?),(p?), andc(t) for the Brown-  three-dimensional matrix. In this section, a single mode no-
ian oscillator. The equilibrium parameters are obtained frontation is adopted for simplicity unless specified. It is shown
the imaginary time path integral formulation, giving in the Appendix of the paper by Caai al3 that the three-
dimensional complex matri$ can be diagonalized by a uni-
1 form matrix U so that

K+Q?

n

1
(@)= —
n Mg 00 1
1 1 e%=exp[— SOy N+ hay3)/h |, (B2)

=3 = Al4
n MB (Q2+ wd)+Q7(Q,)/m’ (A1)

wherey is the transformed terminal coordinates determined

( 2>:z i K by x=Uy and the\’s are the eigenvalues, both given in the
. 7 mBlK+Q2 o0 Appendix of the paper by Caet al.®
Note that the transformation matrixand the eigenvalue
1 0*+Q,7(Q)/m N\ are complex functions. In order to perform Monte Carlo
- ; MB (O2+ wd)+ 0y 5(Q,)/m’ (A15) " sampling of a complex Gaussian functien™Y", one intro-

duces a coordinate rotation
whereQ,=2mn/% B and7(Q,) is the Laplace transforma-

tion of the friction kernel. The real time position—position n:yeim, (B3)
correlation function can be obtained from linear response
theory, giving where the rotation anglé is determined from\ = pe'’, so

that the new Gaussian function reads

ci(t)= %f coth i wBl2)sin(wt) Im x(w) do, , ,
(Al6) e M=e P, (B4)

1 Then, any expectation value gfcan be expressed as
Cyo(t)= o coqwt) Im y(w)dw. (A17)

Here, the linear response functigiiw) is obtained from the <f(y)>)\:LJw f(y)efAyZ/Z dy
analytical continuation of its imaginary correspondence and V2T S —=
is explicitly given as

1 * . 2
1 = f(ne™'"?)e7P7" dy, (B5)
- J2 o
x(@) m(wg—wz)—iwrfy(i )’ (A18) P

where the functional form of is assumed regular for the
coordinate transformation. This procedure removes the sign
APPENDIX B: MONTE CARLO SAMPLING OF THE problem of any quadratic actions in the Monte Carlo sam-

GAUSSIAN FORCE pling. _ _ S
The next step is to sample the intermediate time slices of

The first step toward our goal is to sample the threethe discretized Feynman path. Given the two end paints
terminal points on the trace loop described by the quadratiandx, determined from the previous step, we have the real
action time propagator in the discretized form
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