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Optimal quantum control theory, which predicts the tailored light fields that best drive a system to
a desired target, is applied to the quantum dissipative dynamics of systems linearly coupled to a
Gaussian bath. To calculate the material response function required for optimizing the light field, the
analytical solution is derived for the two-level Brownian harmonic oscillator model and the recently
developed method for directly simulating the Gaussian force is implemented for anharmonic
Brownian oscillators. This study confirms the feasibility of quantum control in favorable condensed
phase environments and explores new quantum control features in the presence of dissipation,
including memory effects and temperature dependence. ©1997 American Institute of Physics.
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I. INTRODUCTION: QUANTUM CONTROL OF
DISSIPATIVE SYSTEMS

Recent theoretical and experimental progress in quan
control has demonstrated the possibility of driving mat
toward a specific goal with tailored laser fields.1–7 Theoreti-
cal tools8–13have been developed to predict an optimal la
field to drive a quantum wave packet to a desired functio
form at a chosen time, and this type of quantum control
been experimentally realized in gas phase and conde
phase samplers and applied to the control of the product
a chemical reaction.6,7,14–16In the future we can expect to se
further exploration of quantum control of more complicat
and realistic systems, such as polyatomic molecules, clus
solvated particles, crystals, etc. Theoretically, the challe
lies in the numerical difficulties of quantum dynamical ca
culations of many degrees-of-freedom systems. Various
proximate approaches for wave packet propagation h
been used to implement the equations of quantum con
theory, including Gaussian wave packet~GWP!,17,18 time-
dependent Hartree~TDH!,19 nearly classical~NC!,12,15,16and
stochastic bath~SB!.11 Although a start has been made, t
quantum control of dissipative systems has not been a
lyzed in a fully systematic and rigorous fashion. In this p
per, a condensed phase system is reduced to a
dimensional system which represents the degree of free
associated with the target and a Gaussian bath which
cludes the infinite degrees of freedom of the environme
Although simplified, this stochastic model can be solved
curately and the results thus obtained characterize the ge
properties of condensed phase quantum control.

To begin, we briefly review the theoretical formulatio
of an optimal weak control field for driving a dissipativ
molecule to a desired target. Although most results here h
been given previously,8,11–13,20,21the emphasis of this sectio
is the formulation of weak optical field control of dissipativ
systems.

Consider a molecule coupled to a time-dependent e
tric field via a dipole interaction. For simplicity, the molec
lar system consists of two electronic states, a ground s
J. Chem. Phys. 106 (12), 22 March 1997 0021-9606/97/106(12)/5
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ug& and an excited stateue&, described by two diabatic
Hamiltonians,Hg and (He1\veg), respectively. The elec
tric field is treated classically as

e~ t !5E~ t !e2 ivegt1E* ~ t !eivegt, ~1.1!

with veg being the transition frequency between the tw
electronic states, which is assumed to be much larger t
the vibrational energy spacings. Within the rotating wa
approximation, the coupled matter and field Hamiltonian
given by

H~ t !5HM1H int , ~1.2!

where the molecular term isHM5Hgug&^gu1Heue&^eu and
the interaction term is H int52mE(t)ug&^eu
2mE* (t)ue&^gu, with m being the transition dipole momen
The density matrix of the molecular system obeys the Lio
ville equation of motion

dr~ t !

dt
52

i

\
@H~ t !,r~ t !#52 iL~ t !r~ t !, ~1.3!

whereL is the Liouville operator. The evolution of the den
sity matrixr(t) as described by the above equation conta
all the information about the system.

In general, the target of quantum control can be speci
as an operatorA and the degree of control is measured by t
expectation value of this target operator at timet f ,

12 or ex-
plicitly,

A~ t f !5Tr@Ar~ t f !#. ~1.4!

In the weak response regime, the analysis is simplified
linearizing the Liouville operator in terms of the field. As
sume that the initial density matrix is defined on the grou
state,rg , and the target operator is defined on the exci
state,Ae ; then the leading term of the expectation value
the target is12

A~ t f !5E
0

t f
dtE

0

t f
dt8E* ~ t !M ~ t,t8!E~ t8!, ~1.5!

where the material response function matrixM is defined as
5239239/10/$10.00 © 1997 American Institute of Physics
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5240 Cao, Messina, and Wilson: Quantum control of dissipative systems
M ~ t,t8!5
1

\2 Tr@Aee
2 iHe~ t f2t8!me2 iHgt8rge

iHgt

3meiHe~ t f2t !#. ~1.6!

The goal is to find an external fieldE(t) which maxi-
mizes the realization of such a target under certain c
straints. To this end, we construct a functional as

J~ t f !5A~ t f !2lE
0

t f
uE~ t !u2dt, ~1.7!

where the Lagrange multiplierl is introduced to lift the
constraint on the total radiation energy. Rigorously, the
timization of the field can be achieved by a variational d
ferentiation of the functionalJ(t f) with respect to the field,
dJ(t f)/dE* (t)50. In the weak response regime, applicati
of the variational procedure results in a linear field equat

lE~ t !5E
0

t f
M ~ t,t8!E~ t8!dt8, ~1.8!

which can be solved as a conventional eigenvalue probl
A yield function,12 a measure of how well the goal i

reached,

y5
A~ t f !

*0
t f uE~ t !u2dt

, ~1.9!

is introduced, which has the same value as the eigenv
l when evaluated for the optimized field computed from E
~1.8!. This is the expectation value of the target per mole
lar per unit incident pulse energy. It then follows that for
given molecular system and a given target, the eigenve
corresponding to the largest eigenvalue is the globally o
mal field which achieves the maximum yield relative to a
nonoptimized pulses with the same pulse energy.12

The above formulation in Liouville space is applicable
many-body systems, mixed states, thermal canonical
sembles, providing sufficient flexibility to include a broa
range of experimental considerations.11 In particular, the sol-
vent influences on wavepacket focusing in the conden
phase can be investigated within this framework. In pract
an interesting scenario is to define a target on the degre
freedom of interest so that only the dynamics projected o
this reduced space is relevant and the dynamics of the
thogonal space is treated as dissipation. In other words,
sipation arises from the coupling of a system to an infin
number of degrees of freedom of a bath, which results
time irreversible dynamics of the system. It is interesting a
useful to examine the effects of such irreversible dynam
on wavepacket focusing.

The major challenge to such a many-atom study lies
the numerical implementation of quantum control theory
dissipative systems, because the difficulty of quantum
namics calculations increases enormously w
dimensionality.22–27Accurate methods, such as basis set
pansions and path integral calculations of real time corr
tion functions, are limited to a few degrees of freedom a
short time dynamics, and are thus incapable of treating
J. Chem. Phys., Vol. 106,

Downloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subjec
-

-

n

.

ue
.
-

or
i-

n-

d
,
of
to
r-
is-
e
n
d
s

n
r
-

-
a-
d
s-

sipation in more general situations. An accurate and gen
numerical algorithm for simulating quantum dissipation
not now available, nor is it expected in the near futu
Therefore, a linearized quantum dissipation model, term
the Gaussian bath model, has become the subject of m
analytical28–31and numerical32–36 studies.

The Gaussian bath model consists of a system deg
of-freedom q and N linear harmonic oscillators$xi%, de-
scribed by the Hamiltonian

H5
1

2
mq̇21V~q!1(

i51

N
1

2
miẋi

2

1
1

2
miv i

2S xi2 ci
miv i

2qD 2, ~1.10!

whereV(q) is the potential as a function ofq,xi is the i th
Gaussian bath normal mode,mi is the mass,v i is the har-
monic frequency, andci is the coupling strength. It was
shown by Zwanzig28 that the elimination of the bath mode
from the equations of motion for the above Hamiltoni
yields the generalized Langevin equation~GLE!

mq̈~ t !1
d

dq
V@q~ t !#1E

0

t

h~ t2t8!q̇~ t8!dt85F~ t !,

~1.11!

whereF(t) is the random force andm is the mass of the
quantum particle. The dynamical friction coefficienth(t) is
then identified as

h~ t !5(
i51

N ci
2

miv i
2 cos~v i t !5

2

pE0
`

dv
J~v!

v
cos~vt !,

~1.12!

whereJ(v) is the spectral density, defined in the discre
limit by

J~v!5
p

2(i51

N ci
2

miv i
d~v2v i !. ~1.13!

The random force can be explicitly expressed in terms of
initial conditions of the bath variables. Therefore, under
assumption that the initial bath distribution in phase spac
in thermal equilibrium in the presence of the system, one
show that

h~ t !5b^F~ t !F~0!&, ~1.14!

where the equilibrium condition̂F&50 is implied. The in-
troduction of the spectral densityJ(v) makes it possible to
pass from a discrete set of modes to a continuum spectr
and hence to represent an arbitrary time-dependent fric
h(t). The relation in Eq.~1.14! holds for a Gaussian bat
regardless of the form of the potential of mean force. It is
this reason that the Gaussian bath is an attractive analy
model to study the solvent frictional effects on vibration
relaxation and activated reaction dynamics.

The Gaussian bath can be easily quantized to repre
quantum dissipation and thereby can serve as a prototyp
No. 12, 22 March 1997
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5241Cao, Messina, and Wilson: Quantum control of dissipative systems
formulating quantum Brownian motion, dissipative tunn
ing, solvent-induced electron transfer, and other quan
processes in the condensed phase. It is therefore the foc
this paper to calculate the material response function o
quantum system which is linearly coupled to a Gauss
bath.11 To this end, the analytical solution of the Brownia
oscillator is derived in Sec. II and the simulation scheme
dissipative systems proposed by Cao, Ungar, and Voth36 is
reviewed in Sec. III. Results based on these two methods
presented in Sec IV and a discussion in Sec. V concludes
paper.

II. A SOLVABLE MODEL: THE TWO-LEVEL
BROWNIAN OSCILLATOR SYSTEM

One of the well-studied analytical models is the d
placed two-level Brownian oscillator system, which has be
solved semi-classically by Yan and Mukamel37 and quantum
mechanically by Tanimura and Mukamel.38 Our derivation
of the quantum propagator of the displaced Brownian os
lator sketched in Appendix A is both mathematically simp
and physically intuitive. This result has recently been use
rederive the Marcus’s electron transfer rate formula based
the exact electronic dynamics.39 Quantum control with such
a model has previously been studied by Yanet al11 semi-
classically and will be further investigated in this secti
with the help of the quantum propagator.

The two-level Brownian oscillator model has been pop
larized as a primary analytically solvable model to descr
the electronic absorption line shape and various nonlin
spectra in condensed phases.37,38,40 In this model, both the
molecular system and the thermal bath consist of harmo
oscillators:

He5
1
2mq̇21 1

2mv0
2q2, ~2.1!

Hg5
1
2mq̇21 1

2mv0
2~q2d!2, ~2.2!

and

H5Hgug&^gu1Heue&^eu

1(
i51

N Fmiẋi
2

2
1
miv i

2

2 S xi2 ci
miv i

2qD 2G . ~2.3!

Here,q is the Brownian oscillator coordinate, with its ba
frequencyv0 and harmonic displacementd, and the set
$xi% constitutes the bath modes, with frequencies$v i%,
masses$mi%, and coupling constants$ci%. In Appendix A,
we illustrate that the quantum propagator of the Brown
oscillator defined above can be solved in a closed fo
which is most conveniently expressed in Wigner phase sp
as in Eq.~A8!.

To obtain an analytical expression for the response fu
tion, we assume a Gaussian target in the excited electr
state, defined in the Wigner phase space representation

Ae~q,p!5
1

2pAWqWp

expF2
~q2qc!

2

2Wq
2

~p2pc!
2

2Wp
G ,
~2.4!
J. Chem. Phys., Vol. 106,
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whereqc andpc represent the center of the target in pha
space, withWq andWp being the widths of the target. Then
given Eq. ~A 8! and assuming a constant transition dipo
momentm51, the material response function is expressed

M ~ t,t8!5
1

2pA~Wq1^q2&!~Wp1^p2&!

3expF2
~qc1d2q̄~ t f !!2

2~Wq1^q2&!
2

~pc2 p̄~ t f !!2

2~Wp1^p2&!
1
if

\ G .
~2.5!

Here, the dynamical parametersq̄(t),p̄(t), andf as defined
by Eqs. ~A9!–~A11! and the equilibrium parameterŝq2&
and ^p2& as defined by Eqs.~A14! and ~A15! will be speci-
fied for the material response function in the following.

To start, the potential difference of the Hamiltonian
Eq. ~2.3! of the displaced harmonic oscillator is

H85He2Hg52 f x1 1
2f d, ~2.6!

with f5mv0
2d. According to the definition of the materia

response function, the time-dependent potential differenc
Eq. ~A2! is determined in a piecewise fashion b
f1(t)5 f2(t)5U2(t)50, if 0<t<t1 ; f1(t)5 f2(t)5 f ,
U25 f d/2,if t1,t<t2; and f1(t)52 f , f2(t)5U2(t)50,
if t2,t<t f . Then the dynamical parameters defined in t
Eq. ~A9!–~A11! can be explicitly written as

q̄~ t f !5
f

2pE dv
Im x

v
$22cos~vt18!2cos~vt28!

1 i coth~b/2!@sin~vt18!2sin~vt28!#%, ~2.7!

p̄~ t f !5
mf

2pE dv
Im x

v
$sin~vt18!1sin~vt28!

1 i coth~b/2!@cos~vt18!2cos~vt28!#%, ~2.8!

and

f~ t f !5
f 2

2pE dv
Im x

v2 $ i coth~b/2!

3@12cos v~ t22t1!#2sinv~ t22t1!#%, ~2.9!

wheret185t f2t1 ,t285t f2t2, and Imx is the imaginary part
of the linear response function.

For an exponential decay frictional kernel defined as

h5h0De
2Dt, ~2.10!

with D being the decay constant andh0 being the friction
strength, the linear response function in Eq.~A18! becomes

x~v!5
1

m~v0
22v2!2 ivh0D/~D2 iv!

, ~2.11!

which in the limit ofD→` reduces to the response functio
of an Ohmic friction. Given the Laplace transformation
the friction kernelh̃(s)5h0D/(D1s), the equilibrium pa-
rameterŝ q2& and^p2& defined in Eqs.~A14! and~A15! can
be evaluated numerically.
No. 12, 22 March 1997
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5242 Cao, Messina, and Wilson: Quantum control of dissipative systems
Previously, within the framework of semi-classic
propagation, Yanet al.11 have calculated the globally opt
mal fields and the corresponding yield for the same Ham
tonian as in Eq.~2.3!. Apparently because of the nature
the semi-classical approximation, their expression of the
terial response function in Eq.~60! of Yan et al.11 differs
from the exact expression in Eq.~2.5! in the following two
aspects. The Gaussian width given asn̄11/2 by Yanet al.11

does not include the dissipation effects as in the definiti
of ^q2& and ^p2& given by Eqs.~A14! and ~A15!. Also, the
Gaussian bath given by Yanet al.11 is not fully quantized as
in Eq. ~A 16!. Nevertheless, at least qualitatively, their co
clusions derived from the semi-classical formula agree w
with our analysis.

III. DIRECT SIMULATION OF DISSIPATIVE DYNAMICS

Our algorithm for calculating the material response fun
tions for dissipative systems is based on a novel simula
method published recently.36 The approach is derived from
very simple idea: since the bath actions are quadratic
thus the functional integrand of the Gaussian bath in
discretized form is a multidimensional complex Gauss
function, the bath average can be carried out by direct Mo
Carlo sampling. Given a bath path generated by the Ga
ians, the system can be propagated under the influence o
time-dependent fluctuating bath force through any metho
choice, such as matrix or tensor multiplication,35,41 split op-
erator propagation,42 wave packet dynamics,43,44 semi-
th

-
l

ns
-

ry
e
g

a
im
nc
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classical propagation,45,46 centroid molecular dynamics,47

etc. Averaging the time-dependent system quantities over
bath variables yields the desired physical quantities of
quantum system-bath Hamiltonian. This procedure thus p
vides a large array of possibilities for simulating quantu
dynamical evolution of dissipative systems.

To begin, the Hamiltonian in Eq.~2.3! is rewritten as

H5Hb~x!1Vc~x,q!1Hs~q!, ~3.1!

whereHb(x) is the bath Hamiltonian

Hb5(
i51

N F pi22mi
1
1

2
miv i

2xi
2G , ~3.2!

Vc(x,q) is the coupling potential

Vc~x,q!52(
i51

N

cixiq, ~3.3!

andHs(q) is the system Hamiltonian

Hs~q!5Hgug&^gu1Heue&^eu1(
i51

N ci
2

2miv i
2q

2, ~3.4!

with the last term being the counter potential.
Assuming the physical quantity of interestF is a func-

tion of the system variables only, one can then express
quantity in terms of a bath average defined as~the indexi for
bath variables implied!
^F@xf~ t !,xb~ t !,xb~t!#&b5
* dx1 dx2 dx3 *Dxf~ t !Dxb~ t !Dxb~t!F@xf~ t !,xb~ t !,xb~t!#e2 S̄/\

* dx1 dx2 dx3 *Dxf~ t !Dxb~ t !Dxb~t!e2 S̄/\
. ~3.5!
e
n,

ns
Tr
the
ered

ith
the
arlo
ate
Here, S̄ is the summation of actions evaluated along
closed path, explicitly given as

S̄5Sb@xb~t!#2 iS@xf~ t !#1 iS@xb~ t !#, ~3.6!

whereS@xf(t)# is the real time action functional for the for
ward pathxf(t),S@xb(t)# is the real time action functiona
for the backward pathxb(t), andSb@x(t)# is the imaginary
time action functional for the thermal pathxb(t). In addi-
tion, the bath configuration is understood as follows:xf(t) is
the forward path satisfying the boundary conditio
xf(0)5x1 and xf(t f)5x3 ,xb(t) is the backward path satis
fying the boundary conditionsxb(0)5x2 and xb(t f)5x3,
andxb(t) is the imaginary time path satisfying the bounda
conditionsxb(0)5x1 andxb(\b)5x2, so that a closed trac
path is formed for the thermal averaged real time propa
tion for t50 to t5t f at temperatureb.

With the introduction of the bath average, the form
expression of a physical quantity of the system can be s
plified enormously. In particular, the material response fu
tion of Eq. ~1.6! is now expressed as~settingm51)
e

a-

l
-
-

M ~ t,t8!5
1

\2^Tr@Ae e
2 i*

t

t fHe[q,xf ~ t !] dt/\

3e2 i*0tHg[q,xf~ t !] dt/\rg e
i*
t8

t f Hg[q,xb~ t !] dt/\

3e2 i*0t8He[q,xb~ t !] dt/\b , ~3.7!

where the operatorsA andrg are evaluated at the final tim
t f and the initial time 0, respectively. In the above equatio
H@q,xf(t)#5Hq(q)1Vc@xf(t),q# and H@q,xb(t)#5Hq(q)
1 Vc@xb(t),q# are the time-dependent system Hamiltonia
evolving under the influence of the Gaussian force, the
symbol denotes a trace over the system variables, and
exponential operators are understood as being time-ord
products.

As has been argued, the quadratic functional in Eq.~3.2!
can be diagonalized, giving rise to Gaussian functionals w
complex eigenvalues and through a coordinate rotation
bath average can be sampled by the direct Monte C
method. The details of the diagonalization and coordin
rotation are explained by Caoet al.36 and in Appendix B.
No. 12, 22 March 1997
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5243Cao, Messina, and Wilson: Quantum control of dissipative systems
For our purpose, the material response function as
pressed by Eq.~3.7! is evaluated through the split operat
propagation with the help of the fast Fourier transfo
~FFT!. In the case that the target is a pure state, it is ben
cial to propagate the target wave function backward in ti
because the dimension of a wave function is half the dim
sion of the corresponding density matrix.

With the above development in hand, we can simul
the dynamics of a quantum system interacting with a Gau
ian bath. The procedure is described as follows:

~1! Choose a finite set of linear harmonic oscillators to re
resent the Gaussian bath. Care must be taken to a
nonergodicity of the bath for the time period of intere

~2! For each mode, sample the three terminal points acc
ing to Eq.~B2! and generate the three paths according
Eq. ~B9!. The quantum fluctuating force is the superp
sition of the contributions from all modes.

~3! The quantum system is propagated under the influe
of the time-dependent complex quantum force, and
quantity of interest is computed.

~4! Steps~2! and~3! are repeated for many independent ba
configurations. The bath averaged quantity represents
quantum dynamical measurement under the dissipa
environment.

IV. RESULTS AND DISCUSSION

The methods described in the previous two secti
make it possible to thoroughly investigate the various fact
present in the quantum control of condensed phase syst
such as temperature, friction, and memory effects. The a
lytical solution of the Brownian oscillator is used to demo
strate the feasibility of control under condensed phase c
ditions, while the numerical calculation of a dissipati
anharmonic oscillator is used to predict characteris
changes in the globally optimal field introduced by the co
densed phase environment.

The first example is the two-level Brownian oscillat
defined by Eq. ~2.3! with parameters assigned a
m51,\51,v051,d55. The target is set atqc55,pc50,
and t f55 with Gaussian widthsWq50.5 andWp50.5. The
dynamical friction kernel assumes the form of an exponen
decay function as defined in Eq.~2.10! with D51 for non-
Ohmic friction andD5` for Ohmic friction. First, the ma-
terial response function was evaluated according to Eq.~2.5!
on a time grid with a time discretization of 0.1. The di
cretized material response matrix was then diagonalized
ing the yield as the maximum eigenvalue and the globa
optimal field as the corresponding eigenvector.

In Fig. 1, the quantum yield defined by Eq.~1.9! is plot-
ted as a function of the friction strengthh0 for Ohmic and
non-Ohmic friction at an inverse temperatureb51. While
both curves show the dramatic decrease of the yield bec
of the increase in friction, the non-Ohmic dissipative syst
clearly has a higher yield than the Ohmic dissipative syst
This enhancement of the yield is due to memory effec
Since an oscillator interacts with the environment dyna
cally only through the resonant mode of the bath, the eff
J. Chem. Phys., Vol. 106,
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tive friction strength of non-Ohmic friction is much smaller
than that of Ohmic friction, although the integrated friction
strengthh0 is the same.

The above calculation of the quantum yield in the pre
ence of dissipation is significantly underestimated for th
following reasons. First, the width of the Brownian oscillato
^q2& in coordinate space decreases with friction strengt
whereas its widtĥ p2& in momentum space increases with
friction strength. Consequently, a minimum uncertaint
wavepacket withWq5Wp50.5 is no longer a reasonable
target when thermal fluctuations and dissipation are prese
It is evident from Eq.~A14! that the spatial spreading of the
Brownian oscillator̂ q2& decreases with the frictionh0 and
this decrease is much more significant at low temperatu
than at high temperature where the thermal spreading b
comes dominant.

Second, a well-focused wave packet moves along a ve
different trajectory in phase space rather than a dissipat
wavepacket. According to our previous model analysis,21 the
center of a focused wave packet in a nondissipative syst
obeys the classical equation of motion such that its trajecto
lies on a constant energy surface in phase space. In the p
ence of dissipation, the initially excited system will lose en
ergy while approaching thermal equilibrium. Therefore,
reasonable target for a conserved system, which satisfies
energy conservation law, will become difficult to achieve fo
a dissipative system, and the optimal light field for a diss
pative system will need to impart more initial energy to
wavepacket than the target energy, as has been observe
previous nearly classical control simulations.12 As an ex-
ample, the quantum yield is plotted in Fig. 2 as a function o
the target momentumpc at a fixed target positionqc54 at
zero temperature for the displaced oscillator described e
lier. For the simple displaced oscillator, two peaks a
pc563 are observed, as expected from energy conserv
tion. However, with a friction of the form of Eq.~1.10! with

FIG. 1. The quantum yield, Eq.~1.9!, of the Brownian oscillator defined by
Eq. ~2.3! as a function of the friction strengthh0 for Ohmic and non-Ohmic
frictions atb51. The friction kernel assumes the form of exponential deca
as defined by Eq.~2.10! with D5` for Ohmic friction andD51 for non-
Ohmic friction.
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5244 Cao, Messina, and Wilson: Quantum control of dissipative systems
an exponential decay kernel ofD51 andh050.5, the maxi-
mum yield is achieved with zero momentum. In fact, for thi
Brownian oscillator, so much energy has been lost to t
bath that the center of the wavepacket can no longer rea
the target.

For the second example, to demonstrate dissipative
fects on the globally optimal field, we employ a quartic po
tential for the excited state,

Ve5
1
2x

21u~x!gx4, ~4.1!

with g520.003 and a displaced harmonic potential for th
ground state

Vg5
1
2~x1d!2, ~4.2!

with d55. Here, the Heaviside function is defined a
u(x)51 for x>0 andu(x)50 for x,0, and again unit val-
ues are assumed for mass, frequency, and the Planck c
stant. The system is initially in thermal equilibrium on the
ground electronic state. The target wave function is a min
mum uncertainty wavepacketA5uf f&^f f u on the excited
electronic state atqc55 andpc522, and the target time is
t f55. The dissipation assumes the exponential decay fo
as in Eq.~2.10! with h050.1 andD51.0.

As described earlier, the direct Monte Carlo sampling o
the Gaussian force can be incorporated into the computat
of the material response function defined in Eq.~3.7!. In
order to reproduce the bath fluctuations as the time of inte
est, 20 harmonic oscillators were employed with frequenci
evenly distributed fromv50 to v55. The target wave
function was propagated backward under the complex ba
force through the split operator method with a time step
0.1 and a spatial grid of 128 points. When att50, both the
target wave function and its corresponding complex conj
gate were integrated with the ground state density mat
rg in coordinate space. This procedure was averaged o
104 independent bath configurations to reach convergence
the material response function.

The optimal fields computed from Eq.~1.8! are then rep-
resented in the Wigner transformation12 defined as

FIG. 2. The quantum yield, Eq.~1.9!, as a function of the target momentum
pc for the same dissipative and nondissipative Brownian oscillators as d
scribed for Fig. 1. The spatial center of the target wave function is fixed
qc53.
J. Chem. Phys., Vol. 106,
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F~ t,v!5E
2`

`

dte2 ivtE* ~ t1t/2!E~ t2t/2!, ~4.3!

which reduces to the power spectrumuE(v)u2 when inte-
grated over the time variable and reduces to the temp
field strengthuE(t)u2 when integrated over the frequenc
variable. Roughly speaking, the slope on theF(t,v) contour
diagram, defined as the tangent formed by the time axis
the principle axis of the contour rotated from the time axis
proportional to the linear chirp rate.21

The contour plots of the Wigner transformations of t
optimal fields at zero temperature are compared for the n
dissipative anharmonic oscillator in Fig. 3~a! and for the dis-
sipative anharmonic oscillator in Fig. 3~b!. As can be seen
from the results, once dissipation is introduced, the car
frequency increases, the linear chirp rate increases, and
time between the excitation and the target is shorten
These effects have been observed in a earlier nearly clas
simulation of the optimal quantum control of I2 photodisso-
ciation in liquid density argon.12,48 Clearly, the increase o
the carrier frequency is the consequence of energy loss to
bath, and the decrease of the travel time of the wavepack
the result of the lowering of the position of the outer turni
point due to the dissipation. The change in the linear ch

e-
t

FIG. 3. Contour plots of the Wigner transformations of the optimal fields
the anharmonic oscillator Eq.~4.1! at b5`, without friction ~a! and with
exponential decay friction~b!.
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5245Cao, Messina, and Wilson: Quantum control of dissipative systems
rate can be explained from the point of view of energy
laxation. As demonstrated in a previous paper,21 the chirp
required to focus a wave packet is directly proportional
the energy dispersion, which changes as a consequen
dissipation.

It is interesting to note that some of the dissipative
fects described above have also been observed in the c
lations of a two-dimensional system, i.e, a system degre
freedom plus a harmonic oscillator.19 It should be pointed
out, however, that we attribute the changes in the opti
fields to the dissipative effects instead of to caging effe
since, by use of the counter potential term of Eq.~1.10!, the
caging phenomena commonly found in solutions is not p
sented in the potential of mean forceV(q). In the paper by
Messina,19 the time-dependent Hartree approximation
shown to be of sufficient accuracy for the control perio
indicating the possibilities that this approximation may
appropriate for larger systems. The numerical results of th
simulations also suggest that some control may survive o
a short time period in the presence of relatively strong di
pation.

Finally, Fig. 4 is the contour plot of the Wigner tran
formation of the optimal field atb51 to be compared with
Fig. 3 of the same plot atb5`. Clearly, when the tempera

FIG. 4. The same plots of the Wigner transformations of the optimal fie
as described for Fig. 3 except for atb51, without friction ~a! and with
exponential decay friction~b!.
J. Chem. Phys., Vol. 106,
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ture is raised, the optimal field for the dissipative oscilla
changes significantly, whereas the optimal field for the n
dissipative oscillator remains virtually the same. As argu
before,11 a nondissipative system at nonzero temperatu
can be treated as a weighted superposition of energy ei
states. Thus, the optimization procedure leads to the max
zation of the quantum yield for the most populated ene
eigenstate while ignoring the other states. Consequently,
optimal field of a nondissipative system has a weak dep
dence on temperature. However, the above argument is
valid for the dissipative system because the wave func
description is incapable of including relaxation, in particu
pure dephasing. In fact, the evolution of the density matrix
strongly influenced by the dissipation, which in turn depen
strongly on temperature. As a result, the optimal field fo
dissipative system changes drastically with temperature.

V. CONCLUSIONS

In this paper, the optimal control fields of two dissipativ
systems are solved exactly. the results not only confirm
findings in previous papers11,15–17but also provide new in-
sight into the feasibility and characteristics of quantum co
trol in condensed phases. In summary, the following conc
sions can be drawn based on our case studies:

~1! Although dissipation reduces the quantum yield, the g
bally optimal field can still lead to a significant amou
of control of the dissipative system. The quantity of co
trol depends on the strength of the friction as well as
functional form of the memory kernel. A non-Ohmi
bath results in higher quantum yields than an Ohmic b
at the same integrated strength.

~2! In general, quantum yields also depend on the des
target, since targets which are reachable on classical
jectories are more achievable. Since the equilibrium a
dynamical properties of dissipative systems are differ
from those of conserved systems, the target wave fu
tion should be modified accordingly, if higher yield
desired.

~3! Dissipative effects on the globally optimal fields are o
served: increase in carrier frequency, increase in lin
chirp rate, shortening in pulse duration, and broaden
in bandwidth, confirming the conclusions of earli
Gaussian wave packet~GWP!,17,18 time-dependent Har-
tree ~TDH!,19 nearly classical~NC!12,15,16and stochastic
bath ~SB!11 simulations.

~4! Temperature effects on globally optimal fields are mo
drastic for dissipative systems than for nondissipat
systems.

It remains a question how well a stochastic model ba
on the generalized Langevin equation in Eq.~1.11! can de-
scribe a condensed phase environment and how a rea
spectral density can be obtained which best represents
environment. From a simplistic point of view, as long as t
total system can be divided into a bath and a reduced sys
such that the effects of the bath result in irreversible dyna

s
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5246 Cao, Messina, and Wilson: Quantum control of dissipative systems
ics of the reduced system and the effects of the redu
degrees of freedom on the bath dynamics are negligible,
stochastic view of many-body dynamics is justified. Mea
while, from a practical point of view, if the generalize
Langevin dynamics with a friction kernel calculated from t
fluctuation-dissipation relation Eq.~1.14! reproduces the
physical quantities of interest, the accuracy of the Gaus
bath model is verified. Following this line, we have recen
performed classical dynamics simulations of excited iod
molecules in argon matrices and have confirmed the Ga
ian bath model based on a coordinate dependent friction
nel computed from force–force correlation functions.
would be interesting to carry out a full quantum dissipat
simulation and to solve for the globally optimal control fiel

APPENDIX A: PROPAGATION OF A TWO-LEVEL
BROWNIAN OSCILLATOR

In this section, we will derive the quantum propagator
a two-level Brownian oscillator in Liouville space. The fin
result is the same as the Liouville space generation fu
tional introduced by Mukamel and co-workers,37,38 and has
been applied to a wide range of problems. However,
derivation presented here is simple in mathematical der
tion and intuitive in physical reasoning.

To begin, we assume thermal equilibrium on one of
diabatic states and define the difference of the two diab
surfaces as

Ĥ852 f q̂1U, ~A1!

whereU is the difference of potential energies andf is the
difference of force constants. The propagation of the tw
level Brownian oscillator can be written as

Ĝ~ t !5 (
n50

`

~2 i !nS D

\ D n
3E

0

t

dtnE
0

tn
dtn21E

0

tn21
dtn22 . . . E

0

t2
dt1

3expH 2 i E
0

t

@Ĥ01Ĥ8~ t8!#/\ dt8J , ~A2!

where the time-dependent functionH8(t8) is defined in
piecewise fashion asH8(t8)5H8 for t2l,t8,t2l11 and
H8(t8)50 for t2l21,t8,t2l . The central quantity is the
propagator of a forced harmonic oscillator, which in terms
the density matrix is given by

r̂~ t !5expF2 i E
0

t

ĤL~ t8!/\dt8G r̂eq
3expF i E

0

t

ĤR~ t8!/\dt8G
5ĜL~ t !r̂eqĜR~ t !, ~A3!

with the subscriptsL andR denoting forward and backwar
propagations, or, left and right propagations, respectively
J. Chem. Phys., Vol. 106,
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To start, considering a frictionless harmonic oscillat
propagated with a time-dependent force, we can rewrite
forward propagator as

ĜL~ t !5T̂ expF i E
0

t

f L~ t8!q̂~ t2t8!/\ dt8Gexp[2 iĤ 0t/\]

5exp@ i ~aLq̂2bLp̂!#exp@2 iĤ 0t/\#, ~A4!

whereT̂ is the time ordering operator, and parametersaL and
bL are defined as

aL5
1

\E0
t

f L~ t8!cos@v0~ t2t8!# dt8, ~A5!

bL5
1

mv0\
E
0

t

f L~ t8!sin@v0~ t2t8!# dt8. ~A6!

Similar relations hold for the backward propagation. The
making use of the operator identities exp(Â1B̂)
5 expÂ expB̂ exp2@Â,B̂#/2 and exp(2iĤ0t/\)r̂eq
3 exp(iĤ 0t/\)5 r̂eq , we arrive at

r~q1 ,q2 ,t !5ei ~aLbL2aRbR!/2 ei ~aLq12aRq2!

3req~q12bL ,q22bR!. ~A7!

This result is better expressed in the Wigner represe
tion as

W~q,p,t !5
1

2pS 1

^q2&^p2& D
1/2

expH 2
@q2q̄~ t !#2

2^q2&

2
@p2 p̄~ t !#2

2^p2&
1 if~ t !/\J , ~A8!

where^q2& and ^p2& are the equilibrium mean square flu
tuations of position and momentum, respectively, and ot
variables are given as

q̄~ t !5E
0

t

c2~ t2t8! f1~ t8!1 ic1~ t2t8! f2~ t8!dt8, ~A9!

p̄~ t !5mq̄~ t !, ~A10!

and

f~ t !52E
0

t

U2~ t8!dt81E
0

t

f2~ t8!q̂~ t8!dt8. ~A11!

Here,c2(t) andc1(t) are the real and imaginary parts of th
harmonic oscillator correlation function written as

c~ t !5\@c1~ t !2 ic2~ t !#

5
\

2mv0
@coth~\bv0/2!cos~v0t !2 i sin~v0t !#.

~A12!

Also, f15 f L1 f R and f25 f L2 f R are the sum and the dif
ference of the force constants, respectively, andU2 and
U1 are defined in a similar way.

Although the above results are given for a single h
monic oscillator, the generalization to a set of uncoup
harmonic oscillators is straightforward and requires lit
No. 12, 22 March 1997
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5247Cao, Messina, and Wilson: Quantum control of dissipative systems
modification. A more interesting situation is a two-level o
cillator which couples linearly to an infinite set of bath o
cillators as described in Eqs. 2.1–~2.3!. One can in principle
project out the dynamics on the original coordinate of
Brownian oscillator by diagonalizing the force constant m
trix of the oscillator-bath potential, given in the mass-sca
coordinates as

K5S v0
21c0 c18 . . . cN8

c18 v̄1
2 . . . 0

AA AA

cN8 0 . . . v̄N
2

D ~A13!

wherecj85cj /Av j andc05Scj /v j
2

Evidently, the final expression will retain the same fun
tional form as Eq.~A8! and one simply has to find corre
sponding expressions for^q2&,^p2&, andc(t) for the Brown-
ian oscillator. The equilibrium parameters are obtained fr
the imaginary time path integral formulation, giving

^q2&5(
n

1

mb S 1

K1Vn
2D

00

5(
n

1

mb

1

~Vn
21v0

2!1Vnh̃~Vn!/m
, ~A14!

^p2&5(
n

1

mb S K

K1Vn
2D

00

5(
n

1

mb

v21Vnh̃~Vn!/m

~Vn
21v0

2!1Vnh̃~Vn!/m
, ~A15!

whereVn52pn/\b and h̃(Vn) is the Laplace transforma
tion of the friction kernel. The real time position–positio
correlation function can be obtained from linear respo
theory, giving

c1~ t !5
1

2pE coth~\vb/2!sin~vt ! Im x~v! dv,

~A16!

c2~ t !5
1

2pE cos~vt ! Im x~v!dv. ~A17!

Here, the linear response functionx(v) is obtained from the
analytical continuation of its imaginary correspondence a
is explicitly given as

x~v!5
1

m~v0
22v2!2 ivh̃~ iv!

. ~A18!

APPENDIX B: MONTE CARLO SAMPLING OF THE
GAUSSIAN FORCE

The first step toward our goal is to sample the th
terminal points on the trace loop described by the quadr
action
J. Chem. Phys., Vol. 106,
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S~x1 ,x2 ,x3!/\

5@Sb~x1 ,x2 ,b!2 iSf~x1 ,x3 ,t !1 iSb~x2 ,x3 ,t !#/\

5
1

2
xSx5

mv

2\ sinh~v\b!
[ ~x1

21x2
2!22x1x2cosh~v\b!]

2 i
mv

2\ sin~vt f !
@~x1

21x3
2!22x1x3 cos~vt f !#

1 i
mv

2\ sin~vt f !
@~x2

21x3
2!22x2x3 cos~vt f !#,

~B1!

wherex5(x1 ,x2 ,x3) is a three-dimensional vector andS is a
three-dimensional matrix. In this section, a single mode
tation is adopted for simplicity unless specified. It is show
in the Appendix of the paper by Caoet al.36 that the three-
dimensional complex matrixS can be diagonalized by a un
form matrixU so that

e2S/\5expF2
1

2
~l1y1

21l2y2
21l3y3

2!/\ G , ~B2!

wherey is the transformed terminal coordinates determin
by x5Uy and thel ’s are the eigenvalues, both given in th
Appendix of the paper by Caoet al..36

Note that the transformation matrixU and the eigenvalue
l are complex functions. In order to perform Monte Car
sampling of a complex Gaussian functione2ly2/2, one intro-
duces a coordinate rotation

h5yeiu/2, ~B3!

where the rotation angleu is determined froml5reiu, so
that the new Gaussian function reads

e2ly2/25e2rh2. ~B4!

Then, any expectation value ofy can be expressed as

^ f ~y!&l5
1

A2pl
E

2`

`

f ~y!e2ly2/2 dy

5
1

A2pr
E

2`

`

f ~he2 iu/2!e2rh2/2 dh, ~B5!

where the functional form off is assumed regular for th
coordinate transformation. This procedure removes the s
problem of any quadratic actions in the Monte Carlo sa
pling.

The next step is to sample the intermediate time slice
the discretized Feynman path. Given the two end pointsxt
andx0 determined from the previous step, we have the r
time propagator in the discretized form
No. 12, 22 March 1997
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^xf ue2 iHbt/\ux0&5F mv

2p i\ sin~vt !GP/2 )
n51

P21 E dxn

3expH mv i

2\ sin~ve! (n51

P

@~xn21
2 1xn

2!

22xn21xncos~ve!#J , ~B6!

where the subscripts denote the discretized time slice of
cremente5t f /P and xP5xf . Introducing the classical tra
jectory xcl and discretized Fourier modesal , one then Fou-
rier decomposes the path as

xn5xcl~ tn!1 (
l51

P21

al sin~ lpn/P!, ~B7!

where the classical solution connecting the two end point
given by

xcl~ t !5
xP sin~vt !1x0 sin@v~ t f2t !#

sin~vt f !
, ~B8!

and the Fourier modes decouple the quadratic action in
~B 6!. Consequently, the real time action functional assum
the form

S~@xn# !5Scl~x0 ,xt ;t !

1(
m

2

t f8

\ H 2@12cos~p l /P!#
P2

t f8
2v82J al2/2.

~B9!

Here, because of the use of the exact quadratic propag
the parameterst f8 andv8 are the rescaled time and frequen
defined by

t f85t f
sin~R!

R
,

~B10!

v85v
1

cos~R/2!
,

with R5t fv/P. Again, the coordinate rotation onan is em-
ployed to treat the complex Gaussian width. Similar pro
dures can be applied to the backward path and, in imagin
time, to the thermal path.
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