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Single-molecule dynamics of semiflexible Gaussian chains
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A semiflexible Gaussian chain model is used to determine the statistics and correlations of
single-molecule fluorescence resonant energy trafBRET) experiments on biological polymers.

The model incorporates a persistence length in a Rouse chain and describes single-chain dynamics
with normal modes. The hydrodynamic interaction is included in the dynamics of the semiflexible
Gaussian chain on the preaveraging level. The distribution functions of the fluorescence lifetime and
the FRET efficiency provide direct measures of the chain stiffness, and their correlation functions
probe the intrachain dynamics at the single-molecule level. When measured with finite time
resolution, the instantaneous diffusion coefficient for FRET is much smaller in the collapsed
structure than in the coiled structure, and the variation has a quadratic dependence on the donor—
acceptor distance. In the fast reaction limit, single-molecule FRET lifetime measurements can be
used to map out the equilibrium distribution function of interfluorophore distance. As an example of
microrheology, the intrinsic viscoelasticity can be extracted from single-molecule tracking of the
Brownian dynamics of polymers in solution. @002 American Institute of Physics.
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I. INTRODUCTION gation flow, etc-®=*8In comparison with bulk experiments,
) ) _ these single-molecule experiments have several advantages,
Single-molecule techniques provide a powerful methods,ch s the removal of inhomogeneous averaging, the direct
to measure the conformational structure and dynamics Qfpservation of intramolecular dynamics without the subtrac-
synthetic and biological polymers. Examples include recenfion of the solvent background as is done in bulk measure-
progress in studying the response of single DNA moleculegnents, and site-specific measurement of a polymer éhain.
under twisting and stretching and probing the relaxation dy;otivated by the experimental progress, we analyze the in-

namics of polymers on short time and length scales. Ongymation revealed by single-molecule measurements and
promising candidate for studying these time and lengtfygicyjate their single-molecule quantities based on the
scales in polymers is fluorescence resonant energy transfgfoynian dynamics of semiflexible ideal Gaussian chains.

spectroscopyFRET). In these experiments donor and accep-  ap jgeal polymer assumes random coil configurations

tor dye molecules are attached to the polymer at two differyng follows Gaussian chain statistics. Without the explicit

ent points. A laser is used to pump the donor dye t0 angngjgeration of the excluded volume effect and the geo-
excited state. Depending on the distance between the donQfeyrical constraints, the simple Rouse model treats the con-

and. acceptor molecule, nonradiative energy transfer fr_om thﬁectivity between next neighbor pairs by harmonic bonds.
excne_d donor dye to the acceptor dye may occur, which reg, ¢ biological polymers are stiff on the length scale ranging
sults in the fluorescence of the acceptor dye molecule. Theq . 5 1\m for microtubes. 17 nm for actin. and up to 50 nm
light intensity at the fluorescence frequency of the acceptof,, pNa 1314 Most singlé-molecule expériments are per-
molecule is strongly dependent on the distance between ”T_‘Brmed on length scales where the polymer exhibits some
two molecules and can be used as a measurement of thigijiry so that the Rouse Gaussian chain model will have to
distance. With current synthetic techmques,_ the position of,¢ extended. In Sec. II, we modify the Gaussian chain model
the donor and acceptor dyes on a polymer like DNA can bg,y iniroducing the persistence length that prevents the poly-
controlled, which aIIov;/f us to explore the polymer dynamicSper from being flexible on all length scales. Similar models
on any length scale. This technique has been used 10 5 semifiexible chain have been studied by Kratky and
investigate the denaturation of chymotrypsin inhibitor, thepqoq Harris and Hearse. Freed. Fixman and Kovac. Ha and
dynamics and folding of single peptides, the fluorescencq-hirumam and other®-27 Interest in these semiflexible
lifetime distribution of Single TMR mOleCUIeS, eJ(E]'SA chain models is revived by the effort to model Single-
similar technique based on the distance dependence of ﬂ_?ﬁolecule force measurements of proteins and DNAs. Our
electr(;n transfer rate has recently been developed by the Xignhhasis here is to formulate the semiflexible model using
group: Using a different set of single-molecule techniques, e analog to the Omstein—Uhlenbeck random walk process

Chu and co-workers observed the single polymer dynamicgg thys incorporate the persistence length into the Rouse
in steady shear flow, the relaxation of a single DNA mol- ,o4a1in a natural and figorous way.

ecule, the response of a flexible polymer to a sudden elon- |, order to interpret single-molecule experiments and ex-

tract the desired information on polymers, we need to calcu-
dElectronic mail: jianshu@mit.edu late the dynamics of semiflexible chains. In Sec. Ill, we

0021-9606/2002/117(24)/11010/14/$19.00 11010 © 2002 American Institute of Physics

Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 117, No. 24, 22 December 2002 Single-molecule dynamics of semiflexible Gaussian chains 11011

solve the Brownian dynamics by performing a normal modewhich studies the viscoelasticity behavior through the re-
decomposition of the Langevin equation of a polymer chainsponse of the bulk material to applied mechanical
This normal mode decomposition is similar to the standarcperturbatiort®3! Evidently, rheology and microrheology
decomposition performed in the Rouse and Zimm modelstneasurements are related to each other, and this relationship
with a modification to account for the short length scales thawill be explained in Sec. VI through the example of the
this paper considers. The model calculation can be elabdntrinsic viscosity. The theoretical calculation of polymer
rated by including excluded volume and hydrodynamic ef-viscosity has a long history, ranging from Kirkwood's
fects under a similar approximation made in the Zimmclassical treatment, to the formulation by Fixman, Bixon and
model?®?° Using the normal mode approach, we calculateZwanzig, etc>**=3"In Sec. VI, we relate the correlation
distance—distance correlation functions that are relevant fdiunction of intrachain dynamics on the single polymer to
single-molecule measurements. intrinsic viscosity and evaluate the viscosity explicitly with
In FRET experiments, people can measure the separatidhe consideration of the persistence length. Our expression
of two dye molecules attached to the polymer chain. Thédor the intrinsic viscosity is related to the correlation function
fluorescence energy transfer reaction usually occurs on ®rmula discussed by Felderhof, Deutch, and Tituf4emt
nanosecond time scale while the intrachain relaxation takels further simplified for the application to single-molecule
millisecond or even longértt*?Hence the FRET lifetime as measurements of Gaussian chain dynamics.
well as the FRET efficiency is a “snapshot” of the transient
configuration. The correlations of the FRET lifetime and the
FRET efficiency reveal the slow intrachain relaxation pro-
cess that modifies the donor—acceptor distance. In Sec. IV A,
the distribution ofE is derived to show different features to !l SEMIFLEXIBLE GAUSSIAN CHAINS
distinguish collapsed and coiled conformations. In Secs. ) _ _
IVA and IV B, the FRET efficiency and the lifetime corre- Before calculating the dynamics, we first develop the
lation functions are formulated for the semiflexible chainGaussian model with a persistence length. Consider a dis-
model introduced in Sec. II. These two correlation functionsCretized version of a continuous polymer chain without ex-
are directly related to the distance correlation function charPlicit account of the excluded volume effects. it unit of
acterizing the intrachain motion, and thus provide experith€ Polymer is at a position denoteq. The bond vector
mentally reliable measures to probe the conformational dytn="n"Tn-1 Separates two neighboring units of the poly-
namics. Furthermore, each measurement of the donorMer chain. It should be noted that the bond vector does not
acceptor distance in real experiments corresponds to a larg@"mespond to an actual chemical bond nor do the subunits
number of polymer configurations. To differentiate them, theCOrrespond to a single monomer. _ _
instantaneous diffusion coefficient is calculated in Sec. Ivc ~ Although the focus of this paper will be on single poly-

to probe the variation of the donor—acceptor distance witt{n€r dynamics, we start by examining the equilibrium distri-

. . . 2
time, and yielding information about the mean square disPution of the polymer chain. Averaging anc;u ~over all
ny =0 and{uf)=ag with ay the

tance as well as instantaneous distance between the dye mBPSSibIe orientations g!v&{a;l S .
ecules. bond length. To describe the rigidity of the polymer chain,

To model FRET experiments, we treat the reaction dy-"¢ zdﬁ]fi”rﬁ the correlation between two bonds (aguy,)
=agb with 0<b<1. If b=1, everyu, must point in

namics as a convolution of the polymer motions and the o o - .
actual energy transfer event which depends on the separati(glﬁe same direction resulting in a rigid rodblf=0, there is no

between probes. Without the intrachain motion, each ﬂuoresc_:orrelatlon between two bond vectors and the chain is an

cence lifetimer corresponds to a specific donor—acceptorideal Gaussia_ln chain on all length §ca_|e_s. The total length of
distance R,,. And the fluorescence lifetime distribution the p(N)Iylmer Is the sum O.f all the individual bond vectors,
function directly reflects the equilibrium distribution of in- Rz_Enzl Un. whereN—l is the number of bond vectors.
trafluorophore distanc®. However, the slow intrachain Using the relations between bond vectors we heRg=0
dynamics slightly modifies this correspondence and bring§In
another configuration-dependent weighting factor. In Sec. V, (1+b) (1—bN-1
the FRET lifetime in the fast reaction limit is discussed to(R%)= >, (UyUp)= m(N—l)—ZbW a3.
incorporate the intrachain motion during the energy transfer nm (1)
reaction. Inhomogeneous cumulant expansion lefads to a
weighted inhomogeneous reaction time, which serves as @ most applications to polymers the second term would be
perturbative correction to the static lifetime=K 1. Thus  neglected because of the larbelimit, which gives us the
through single-molecule lifetime measurements one can magxpected result(R?)= Lk(N—l)ag, where L, =(1+b)/
out the distance distribution function even with intrachain(1—b) is the Kuhn length. The persistence length is related
relaxation. to the Kuhn length by ;=L /2. Taking the continuous limit
The single-molecule spectroscopy and imaging directlyof the discretized model we havb=exp(-1/L,) and
track the Brownian dynamics of polymers in solution, which (u(s)u(s’))=a3 exp(—|s—s'|/L,), where the variables and
determines the viscoelasticity property from the correlatiors’ are the continuous analog of the index for the subunits and
function of single molecules. The single-molecule approactallow us to trace the positions of the subunits on the polymer.
has become known as microrheology in analogy to rheologyin the continuous limit, the expression fR?) becomes
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5 N-1 (N-1 , chains treat the boundaries differently and do not lead to the
(R)= fo fo ds ds exp(—|s—s'|/Ly) chain homogeneity implied in the Gaussian statistics.
=2ajLy(N—-1)—2agLj[1—e N~ V/tp], (2 11. BROWNIAN DYNAMICS OF SEMIFLEXIBLE CHAINS

For the long chain length limit we get the expected scaling  Single-molecule experiments measure trajectories of in-
relation for a random Gaussian chdiR?)=2(N— 1)Lpa§. trachain motions of polymers, and the interpretation of such
In the short chain length limit, we also have the expectedneasurements is helped by model calculations of polymer
relationship for a rigid rodR?)=(N— 1)2a§. dynamics. The Brownian motion of a polymer chain is gov-
It is known that the Gaussian process with exponentialerned by the Langevin equation for each bead,
decay correlation defines the Ornstein—Uhlenbeck process. o= —V.U+f ®)
The three-dimensional equilibrium distribution function is n n n’
denoted asP.q(u)<exd—pU] with the exponential func- wheref, is the random force with local Gaussian distribu-
tional given by tion, (fy(t))=0, (fn(t)fma(t’))=2LkgTSmndpzd(t—t").
5 Although the equations of motion are straightforward, the
3 2 b + 3ug 3 solutions to these equations are not trivial. To make the prob-
as(1-b?) g (Un--1~bup)® 2a2’ @ lem more tractable, we define normal modes so that the dy-
namics of each mode are independent and the equations of
whereU is understood as the potential energy of the Gaussmotion for these modes are simplified. For the flexible
ian chain. For the purpose of further calculations, the potenggyssian polymer chain, one usually defines the Rouse nor-

N—-2

BUW) =3

tial function can be cast into mal modes, which have a Fourier decomposition into func-
3 N=21 4 )2 tions of the form cosgpr/N), wheren is _the bead indgﬂ}l is
BU= - >, _) (Upt1—Up)2 the total number of bgads, ampdis an integer denoting the
2a5(1-bH) a1 [\ 2 normal modes. The simpr/N) components are zero by the

3 requirement that the derivative be zero at the end points of
—z(Uﬁfﬁ Ui) the polymer chain. Because the applications that we are ex-
4 amining are for semiflexible chains, it is advantageous to

Ups1+U,)?
+(1—b)2(¥) +

N-2 2 modify the Rouse mode to treat the end units more rigor-
3 1 [un+rtUy i
=— > |Lp(Upsqp—up)2+ — | —=—= ously. The normal modes are defined as
4a-0 n=1 P Lp 2
N-1 1\ pr
3 rn:x0+22 cho{(n_E)W , (7)
4 —(Uj_+ud), 4 p=1

where p is an integer denoting the modes. This definition
wherelL , is the persistence length defined earlier. Note theemoves the artificial constraint on the end point derivatives
extra terms for the initial and final vectotg anduy_; in previously imposed in the Rouse normal mode decomposi-
Eq. (4) are necessary for satisfying the chain homogeneitytion. For the semiflexible Gaussian chain, the normal modes
i.e., the length of each bond is constant on average. Theefined in Eq.(7) approximately diagonalize the potential
Boltzmann distribution generated from this potential func-and simplify the dynamics of the polymer chdsee Appen-
tion rigorously reproduces the Gaussian statistics as intradix A). The equation of motion for thpth mode becomes
duced in Eq.(1). For a long Gaussian chain, we take the

. L X
continuous limit as gpa_tp_ NpXptFp, ®)
u _3 fNild G 2 where
B [U(S)]—m . sby| o5 +L—pu
24NkgT 1
3 p= —B nzpﬂ- 2L SHZZN'FIC Szpﬂ-
4 —5 (Ux_; T ud), 5 a ©
where the bond index is treated as a continuous variable. {,=2N{—6p,N¢, (10
Clearly, from Eq.(5), the semiflexible model exhibits the (fpa(t)fqg(t’»:25pq5a3§pkBTb‘(t—t'). (11)

same long chain asymptotic behavior as the original Rouse
modes as well as the proper behavior for a stiff rod onEvidently, the random force acts on each mode indepen-
shorter length scales. dently and satisfies the fluctuation—dissipation relation.
Similar results have also been obtained by Winkler, = The concept of normal modes in polymer dynamics has
Reineker, and Harndtusing the maximum entropy method been directly applied to the interpretation of single-molecule
and by Ha and Thirumal#i using a mean-field approach. As experiments. For example, Winkler has calculated the normal
noted by Lagowski, Noolandi, and Nick& the Gaussian mode relaxation dynamics of stretched flexible chain
chain thus generated is homogeneous and has an exponentiablecules! which agrees with Chu’s experimental dafan
decay correlation, which are the properties of the Ornstein-the limit L,— 1/2, the above-given normal modes recover
Uhlenbeck process. Earlier adaptations of the process to stithe Rouse model discussed in standard textb8bkr a
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rigid-rod like polymer,L ,— <, all the normal modes will be le+06 g T T T , T =7
suppressed, keeping only the center of mass motion. Exac . e
numerical solution of the original equation of motion in Eq. 8e+05 - s |
(6) will keep both the transnational and rotational motion of I //
the rigid rod. e
Through the Brownian dynamics of the semiflexible N e l
chain, one can relate single-molecule FRET measurements t ,45 i /’
the correlations between the sites on the polymer chair 4e+05| e .
where two dye molecules are attached. We define the dis 3 pd
tance between the two beads on the polymer chiijp, 26405k pd _
=r,—I'n, wheremandn correspond to the index of the two | ///
points on the polymer chain. In terms of normal modes we . -~ . ' ' . ' |
can express this quantity as 0 500 1000 1500 2000
No1 |n-m|
Rym= E Cgmxp FIG. 1. The mean square distance betweemtheand themth beads given
p=1 in Eq. (14) for a polymer chain with 5000 beads. Hexgis taken as the unit

length and the persistence lengthis taken as 500. As shown in E(C6),
R2,, has a quadratic dependence|an-m| for |n— m|<L,, and is propor-
tional to|n—m| for [n—m[>L,.

with

cP :_4sinp—ﬂ(n—m)sinp—w(n+m—1) (12
nm 2N 2N '

The propagation of the normal modes follows the Smolu-

chowski equation in a quadratic potentiaee Appendix A with
The correlation betweeR,,,(0) andR,,(t) is kT
N-1 D=—-, (14)
o .2 3KeT Ap ¢
(Ron(t)Ran(0))= 2, (chm)®———exp — 7"t|. (13) _ . .
p=1 p dp so each bead undergoes instantaneous diffusive motion in

At t=0, the above-noted expression gives the mean squaffree-dimensional space without feeling the interaction of the

distance between theth and themth beads along the chain, Polymer chain. This short time behavior does not depend on

R2, . asis given in Eq(B4). Direct evaluation of the sum in the persistence length and exists in the ideal Rouse chain as

the equation is plotted in Fig. 1, wheRZ,, shows a qua- Well . o .

dratic dependence dm—m)| for small|n—m| and a linear (2) In the intermediate time region, each normal mode

dependence om—m| for large|n—m|. decays with various rates, and contributes jointly to the cor-
(1) In the short time region, summation over the first- "elation function(Ry(t) - Ray(0)). For different degrees of

order Taylor expansion of each exponential function leads t@tiffness, the correlation function has different time scales. In
the largeN limit, the summation ovep can be approximated

(Ram(t) - Rm(0)) = (R ) — 6D, by an integral from 1 to infinity, resulting in
|
2aj 1 ot
50812 ey 2x — 12| L,<N
7 Lp (n=mt zr(zmzrp) g
(Rom(t) - Rpn(0)) = 2 1 74t (15
B a3 24 114 Lt
L, (n—m)“t* " T"| — —, —1, Lp=N,
om P 4’ AN

where t*=6Dt/(a§) is the reduced time, and’(«,2) which represents the fundamental relaxation mode of the
=f7 x*~Lexp(—x)dx is the incomplete gamma function. As polymer chain.
shown in Fig. 2, the normalized distance correlation function At this point, the model that we have constructed is simi-
B(t) = (Rnm(t) - an(0)>/<Rﬁm> decays nonexponentially for |ar to the Rouse model, where the only interactions are those
both flexible and stiff chains. The decay time increases withyictated by the connectivity of the polymer. It is known that
the per5|stﬁnc|e length. Y the s the Rouse model does not reproduce experimental results
. (3) In the long t|me_ reglon,_onyt e slowest mode sur- because spatial interactions between two monomers sepa-
vives, and the correlation function becomes . .
rated by large distances along the polymer backbone are im-
portant. To develop a more realistic polymer model, we
R R.(0))=(cl 2 3keT _ é 16 should include real polymer interactions like hydrodynamic
< nm(t)’ nm( )>_(Cmn) ex t], ( ) .
Ny Ny and excluded volume effects. These effects can be included
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single-molecule experiments. To interpret the FRET experi-
ments and extract the desired information, we calculate
single-molecule quantities for the intrapolymer energy trans-
fer process, which is controlled by the polymer conforma-
tions.

A. Distribution and correlation function of FRET
efficiency

With the help of two photon-counting detection chan-
nels, one can track the real-time evolution of intramolecular
and intermolecular distances of a freely diffusing individual
macromoleculé.The instantaneous FRET efficienByt) is
calculated from the donor and acceptor emission intensities
lq andl,, using the formulE=[1+ yl4/1,] %, whereyis
a correction factor. According to the E&er theory, the effi-
ciency E has a strong dependence on the interfluorophore
distance,E=[1+ (R/Rg)®] "%, whereRg is the Fuster ra-
dius. The Foster energy transfer occurs on the nanosecond

0'015 ~ E scale, whereas conformational changes of polymers usually
[ ~ I occur on the millisecond scale or even longer. Therefore the
000 ik 1 N donor and acceptor fluorophores quickly reach kinetic equi-
0 Sex09 1e+10t (;5;”;10 2e+10  2.5¢+10 librium under a laser pump, and hence the efficieBqyro-
T vides “snapshots” of the polymer configurations over time.
The correlation of the FRET efficiency, defined as,

~ (E()E(0))—(E)?
Cnm(t)_ <E2>—<E>2 ’

FIG. 2. Log plot of the normalized distance correlation functif(t) for a
polymer chain with 5000 beadk,=5 for the flexible chain and,=500
for the stiff chain.{aS/GkBT is taken as the time unitp(t) decays nonex-
ponentially with time. Obviouslyp(t) decays on a much longer time scale
for the stiff chain than for the flexible chain.

17

provides additional information on conformational dynamics
by similar approximations introduced in the Zimm model. ©n & large time scale that is difficult, and sometimes impos-
We discuss hydrodynamic interactions briefly in Appendixsible, to obtain by conventional techniques.

D. For the semiflexible Gaussian chain introduced in Sec.
From the above-mentioned analysis, it is apparent tdl. we evaluate the correlation function explicitly. Assuming
note that the interfluorophore distanRg,, follows an effec-  that the donor and acceptor dye molecules are attached to the

tive diffusion process, with the Green’s function in E§8)  hth and themth beads of a single semiflexible polymer
characterizing a Gaussian process with nonexponential coghain, the FRET efficiencf is related to the interfluoro-
relation. [ ¢(t)dt provides a time scale for the effective phore distanc&,r by

diffusion, the effective diffusion coefficient in the potential
of mean force can be formulated ab & [; ¢(t)dt=(R2 ),
which is generally different from the diffusion coefficient
2D used in Pastor, Zwanzig, and Szabo's wérkyhereD , , )
=kgT/{ is the diffusion coefficient for each polymer bead. The |r_1terfluorophore distanc® IS governec_i. by thg
As discussed later in Sec. IV C, the diffusion coefficieit 2 Browman motion of'the po!ymer chain. Th.e equilibrium dis-
only reflects the diffusive motion of each polymer bead in_tr|but|on and evolution derived in Appendix B are
dependently and contains no information about the collective

E(Rym) = l+(an/RF)-6. (18

271. —3/2 3R2

H H nm

motion of the polymer chain. Ped Rom) = ?<Rﬁm> exp{ — 2<R—2>] (19
nm

IV. SINGLE-MOLECULE FRET OF SEMIFLEXIBLE

CHAINS G(Ram(1),t|Rnm(0))

Single-molecule fluorescence resonant energy transfer 27 ) —3/2

(FRET) allows us to measure the separation of donor and = ?<an>(1—¢(t) )

acceptor dye pairs on a single polymer chain. In a simple

experimental setup, the donor and acceptor are located on 3(Ram(t) = d(1)Ry(0))? 20

specific sites on the polymer chain. According torster Xp ~ 2<R§m>(1—¢(t)2) ' (20

theory, resonant energy transfer is mediated by the dipole—

dipole interaction, and the transfer rate depends on thehere¢(t) is the normalized correlation function of the in-
donor—acceptor separation a§(R)=x1/R®. The inverse terfluorophore distance given in E@5). Thus the average

sixth-power law leads to a sensitive probe of intrachain dy-efficiency and the correlation function can be explicitly
namics, which has been exploited extensively in recenevaluated as
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(b) Stiff polymer chain 3
0.001 : ] . J . ! . ] FIG. 4. The distribution of the FRET efficiency with thé rSter radiusRe
0 50 100 150 200 as the length unitR,,=|R,n| is the mean square root of the donor—
1 K T T T E | acceptor distance. AR, increases from O to 2.(R, the distribution
F 3 shifts from the unimodal distribution arourtt= 1, to the bimodal distribu-
[ - y tion, and then to the unimodal distribution arouge- 0.
0.1 Tr=..3
E

limit, C,(t) is a combination of all the relaxation modes,
. ] . i . L . S ; o
0.001 200 200 500 800 while in the long time limit, only the fundamental mode
: exists. As shown in Fig. 3C,(t) always decays on the
FIG. 3. Comparison of the FRET efficiency correlation functi@n,(t) for same time scale as that @f(t) for various stiffness and

various(R2). a, and {a/6kgT are taken as the length unit and the time Chain lengths, thus providing a good probe of the intrachain

unit, respectively. The Fster radiusRg is taken to be 5. The solid lines are dynamICS

the efficiency correlation functions, and the dot-dashed lines are the corre-  Besides the FRET efficiency correlation function, the

sponding distance—distance correlation functipft). (a) Flexible chains g . . .- .

with N=10, L,=0.5. (b) Stif chains withN=10, L,=2.0. (¢) Long stif d|str|but|0|_’1 function of the efficiency is gl§o a go.od measure

chains withN=20, L,=2.0. of the chain stiffness. In general, the efficiency distribution is
obtained by transforming the equilibrium distributionRf,,,

into the efficiencyE of Eq. (18) as

(=4

_ 3 RS
(E)= f AR (Rom) Pee R, P(E)= \/5 PRy LBV
_ 3 3 3R2 1-E\13
Cnm(t) ffd an(t)d an(O)E(an(t))E(an(O)) xex;{ 2<R m>( E ) . (24)
X G(Rm(t),t|{Ram(0)) Ped Rum)- (21)

As shown in Fig. 4, plots of the efficiency distribution with
different mean square interfluorophore distance display dif-
ferent features. As the mean square interfluorophore distance
—312 increases, the FRET efficiency sharply shifts from the uni-
, (22 modal peak aE=1, to the bimodal distribution, and then to
the unimodal peak & =0. These features are explored nu-
Cnm(t)~[1—¢2(t)]*3’2— 1. (23) merically by Srinivas and Ba_gchi to distinguish the disor-
dered and ordered conformatiotisThe complicated feature
In real experiments, the FRET efficiency measurement i®f the efficiency distribution implies that the average effi-
mainly performed in the regime wheR,, <R and the ef- ciency(E) does not provide enough information of the dis-
ficiency is sensitive to the interfluorophore distance only intribution.
the close vicinity ofR . Although it is difficult to obtain the In a recent experiment, Weiss and co-workers investi-
analytical expression of the FRET efficiency correlationgated the single enzyme Staphylococcal nuclease with FRET.
function under such condition, a numerical example plottedlhe instantaneous FRET efficiencie&) and the correlation
in Fig. 3 still shows the close relation betwe€n(t) and functionsC,(t) were evaluated for 100 labeled Staphylo-
#(t). We have plotted three different cases in Fig. 3,coccal nuclease moleculd$t was observed that the correla-
(R2.)<RZ for a flexible chain{R2,)~R2 for a short stiff  tion functions had a wide distribution of time constants,
chain, and R ,)> R for a long stiff chain. In the short time which demonstrates the complexity of the intrachain motion.

For smallRg, we can approximate Eq18) as a delta
function and show that

( nm>

(E)=
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B. Correlation of FRET lifetime taneously recorded with an integration timg,. As a result,

Optical methods developed recently are capable of trackn€ trajectories of the distance between two dyes are ob-
ing single molecules under physiological conditions in realtdined. Each measurement of the interfluorophore distance
time. The environmental changes of individual molecules in-Ram €&n correspond to a large number of polymer configu-
duce the conformational changes of molecular configuration&tions. To differentiate them, the variation of the distance
on a much longer time scale than energy transfer. As a resulfVith respect to time is examined in order to understand the
the dynamical tracking of lifetime information provides a dynamic heterogeneity of structuteThe instantaneous dif-
measure of individual molecules in nonequilibrated and hetfusion coefficient measured in these experiments is defined
erogeneous systems, and offers details of single-molecufS
dynamics that are usually hidden in conventional ensemble

— 1
measurements. D(Ram(0))= gr—((Ram(toin) - Ram(0))6 (28)
The decay of the fluorescence on the donor includes ra- bin
diative decay and nonradiative energy transfer, wherety;, is the experimental bin time due to the finite time
1 R ~® resolution and(---)s stands for the integration over the
K= T_D 1+ Re ) , (25) Green’s function for a fixed initial separatid®,,(0). For

the semiflexible polymer chain, we are able to evaluate in-
where R is the Foster radius andrp is the fluorescence stantaneous diffusion coefficient directly with the Green's
lifetime without acceptor. Since the intrachain dynamics oc{function in Appendix B, giving
curs on a much longer time scale than the FRET process, the 1- 2ty

. . . - - bi
polymer configuration remains the same when the FRET oc D(an(O))=(R2m> -7 hnd

curs, hence the lifetime is a “snapshot” at the transient con- 6tpin
formation 2
’ [1- ¢ (tyin)]
1 . +RAm(0) (29
T (26) bin

K~ 1+(R,n/Re) ¢ . o .
This expression oD(R,(0)) is ageneral result for any
Continuous “snapshots” of transient configurations revealGaussian process and implies the following:

the correlation between two configuration-controlled life- (1) As t,;, approaches 0, only the first term survives and
times, which reflects the slow intrachain motion that modi-the instantaneous diffusion coefficient reduces t® 2
fies the donor—acceptor distan@g,,. The lifetime correla- =2kgT/&, which describes the independent diffusive mo-
tion function is defined as tions of the donor and acceptor sites and does not provide
(7(t) 7(0))—(7)? any information of the chain-configurations or the interac-
Cam(t) = A (270 tions.

(2) As ty;, approachese, averaging Eq(29) over the

where(---) is the average over various initial configurations initial position R,(0) yields the relation in the long time

of a given pair, and the configuration-controlled lifetimes  |imijt, 6Dtyn=2(R2,Y=((Rnm(tpi) — Ram(0))?), where D

related to the energy transfer efficienEydiscussed in Sec. s the diffusion coefficient of polymer beads.

IVA as 7=71p(1—E). Therefore, the lifetime correlation (3) The mean square distance in equilibriufR?, ),

function is exactly the same as the efficiency correlationyhich is determined by the morphological structures of the

function in Eq.(17), which can be used to monitor the intra- polymer, relies on the condition of the solutidiR2,,) in the

chain dynamics at the single-molecule level. collapsed state is smaller than that in the coiled state, and
The efficiency measurement discussed in Sec. IVA andr2 ) in the coiled state is much smaller than that in the

the lifetime measurement determine similar quantities. Boubrdered statérod, toroidal, eto. As a resuItB(R (0)) in
[l [l - ’ nm

measurements utilize the separation of the time scales for.tk@ollapsed structures is much smaller than that in coiled struc-

reaction and the diffusion processes to detect the dynamlc?llJres

evolution of microenvironments at the single-molecule level. (4) For a specific condition of solution when the mean
The lifetime method requires only one detection channel bugquare distance in equilibriur{rRﬁm> is fixed, the variation

with high time resolution usually in nanosecond scale, while  — . Sl
the efficiency measurement requires simultaneously trackin f D(Rym(0)) has aquadratic dependence on the initial dis-
nceR,m(0)= | an(0)|-

donor and acceptor emissions but with relatively lower time Th luei . litati £ with
resolution. Both methods are experimentally reliable for ese conclusions arelm qualrtative agreement with re-
cent experiments on PCN¥.Instead of two fluorophores

monitoring the intrachain motion i real time. attached to the same chain, the donor and acceptor dye mol-
ecules in the reported experiment are attached to each end of
a double helix DNA molecule, respectively. Therefore the
In FRET measurements, the experimental sample witlyuadratic dependence &,,,(0) is not exactly observed. It
the attached donor and acceptor dyes is either adsorbed to thas observed that the instantaneous diffusion coefficient in
glass surface or prepared in solution. Fluorescence images tife unfolded state is one order of magnitude greater than that
the sample are detected by scanning the confocal volumé) the folded condition, which mear(ﬁﬁm) in the folded
and photobleaching curves of donor and acceptor are simustate is much smaller than that in the unfolded state.

C. Instantaneous diffusion coefficient
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tribution function. To take into account the polymer motion
during the reactionP(z) can be evaluated with inhomoge-
neous cumulant expansion for a fixed initial configuration
which has been used in studying spectral diffusiogiving

t
FIG. 5. A sketch of intrachain fluorescence resonant energy transfer process, P(Ro,t)= < eXF( - f K( T)dT) > . (34)
with double arrow denoting the intrachain dynamitsand with thick arrow 0 Ry
denoting the population depletion from the donor.

Here(-- '>Ro stands for the homogeneous average for a fixed

initial configuration and can be calculated with cumulant ex-

V. THE FRET LIFETIME DISTRIBUTION pansion, for example, to first order, as

In order to calculate the lifetime distribution, we con- t
sider a general scenario where the kinetics of the system P(Ro,t)~ex;{—f (K(r))Rodr . (35
described by 0

P(t)=LP(t)—KP(1), (30) For the semiflexible chain.model introduced in Sec. Il
the inhomogeneous average is performed over the Green’s
whereP([r],t) is the probability distribution function of the function in Eq.(B7), giving
polymer chain and is the propagation operator of the chain.

As illustrated in Fig. 5, the depletion of the population is K(R+Roe(1))
denoted byK and the intrachain motion is governed ByAt <K(T)>Ro:f [2m(R2 ) (1— ¢(1)?)/3]%?
zero time, we pump the donor dye to an excited state, and
then monitor the lifetime distribution. The Laplace transform 3R? =
of Eq. (30) yields Xexp — 2(RZ )(1- ¢(1)?) d°R
. 1
P(2)=_—Po 3D %K(R0)+2Dt§ 3,9, K(Ro), (36)

whereP(2) is the Laplace transform d®(t) and Py is the o h lied the short i orKeR
initial population. To calculate the lifetime distribution func- where we have applied the short time expansiork¢

tion, we take the average of E(B1) over the equilibrium +Ro?s(t))NK(Ro)+Eu,v‘9£‘9vK(R0)~Ru2ﬁv/2 with u, v
distribution P, and obtain the equation for the survival Standing forx, 'y, z (Ri)(1—¢(t)7)~12Dt, and D
probability N(z) = ((z— £+ K) ~1), where the angular brack- =kgT/{. Therefore Eq(35) can be approximated as

ets(---) refer to the configurational average over the equilib-

rium distribution functionPyq, i.e., (A)=/ AP.@d"r. From P(Ro,t)%ex;{—K(Ro)t—DE r?,Lf?MK(Ro)tz}
N(z) we calculate the Laplace transform of the ensemble g
lifetime distribution as

f(2)=1-zN(z)=((K—L)(z— L+K) Y. (32)
In the sluggish environment,<K, the relaxation of the where in the second approximatiors replaced by the reac-

reactive system is extremely slow so that the reaction ratdo" t_|me|_11_<(Rﬁ) fo[] al_?P_eC'f'C configuration in the fast
depends only on the transient configuration, therefore, thEeaction limit. Thus the lifetime

DS ,3,d,K(R
~ex;{—K(Ro)t——" w0,k (Ro)

K(RoZ ' 87

lifetime is 7=P(0)~K~. The survival probability in 1 DX ,d,d,K(Ro)
Laplace space becombgz)~((z+K) 1), and the lifetime KR €A~ K(R.)2 (38
U o : " (Ro) (Ro)
distribution function is the static average over the equilib-
rium configuration, i.e., becomes a weighted inhomogeneous reaction time and the
lifetime distribution becomes a weighted average over inho-
f(t):f Ke KtpdNr. (33y  mogeneous configurations,

Under such conditions, the interfluorophore distance distri- f(t):j K(Ro)exp{— M}Peq(Ro)dBRo-
bution as well as the transfer rate distribution can be ob- K(Ro)
tained from single-molecule fluorescence lifetime (39)

measurement¥. The ensemble averaged lifetime becomesEor the FRET rate described in E@®5), the weighting factor
the static average of the inhomogeneous lifetime(t) can be evaluated explicitly as

%<K71>‘44
However, natural functions of biological polymers are F{— Dzu%ﬁuK(Ro)}
usually studied in solutions, where the static limit in E383) K(Rp)?

does not apply. Although the energy transfer reaction occurs
on a faster time scale than the intrachain relaxation, it is —e p[—
important to include the relaxation effects in the lifetime dis-

6D7p 5(Rg/Rg)© } “0)

Rs [1+(Ro/Re) 1
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wherer is the fluorescence lifetime of the donor dye with- C

out acceptor. When the diffusion coefficient increases, small ~ 7p(t)~ NBE (Fax(D1md 0))}(Fmy(0)rny(t))
Ry or large FRET rate will be favored, thus the lifetime n

distribution will be shifted toward smalt, hence the en- c I (1) \ [ Irny(t)
semble averaged lifetime decreases. Variational treatment by - % N'B <5rnx(0)> < army(0)>’
Portman and Wolynes has rigorously proved that the static

and the dynamic averages are the upper and the lowayhere we assume the motions along different Cartesian co-
bounds on the ensemble averaged survival probability foprdinates are decoupled. The Gaussian factorization and the
general diffusion-controlled reactiofi$.In the limit when decoupling assumption hold exactly for the Brownian motion
D—0, the small FRET rate contribution will be maximized of Gaussian chains.

and the lifetime reduces to the reaction time for a static con- ~ The key result of this section is the last expression in Eqg.
figuration, 7= K L. Given the functional form of the energy (44), which relates single chain measurements to macro-
transfer rate, each measurement of lifetime corresponds toS€0pIC Vviscoelastic responses. Here, the stability function
fixed donor—acceptor distance. Therefore, by measuring thé mx/ 9rnx measures the divergence of the trajectories with
FRET lifetime distribution, one can map out the distribution respect to initial conditions and cannot be obtained directly
function of interfluorophore distance. This mapping howeverffom bulk measurements. By virtue of this expression, we

is modified according to Eq40) by taking into account the can evaluate the intrinsic viscoelasticity of a Gaussian chain
diffusional effect. by tracking bead motions along a polymer chain.

Accurate evaluation of the exact expression in E®J)
has been carried out by Pyun and Fixman, Bixon and Zwan-
zig, etc®>~3"We will calculate the viscosity within the semi-
flexible Gaussian model. The viscoelasticity function in Eg.
the stress tensor ig44) can be transformed into normal modes as

(44)

VI. INTRINSIC VISCOSITY

From standard viscoelasticity theory,
measured under the ext_ernal shear floyv—j a(t)y a_n(_j is (D) N-1 I () A
related to the desired time-dependent viscoelastigity) o E W _g_t
throughoy,(t) = 75+ It 7p(t—t")a(t’"), wheren,(t) is the nx P px P
viscosity contribution from polymers. Given(t), the intrin-  wheredr .,/ X,y is the unitary transform matrix element be-
sic viscosity i 7]= [ 7,(7)d7/(p7s), Wherep is the mass  tween the real coordinates and normal modes. For the semi-
density of the polymer angs is the solvent viscosity. Simi- flexible Gaussian chairy,(t) can be written as a sum over
larly, we can determine the storage modua’{ w) and the the exponentially decaying correlation functions of the nor-
loss modulusG”(w) from the viscoelastic responsg(t). mal modes

We derive the microscopic expression for the polymer N-1
viscosity 77,(t). We begin with the definition of the intrinsic 7o) = kBTE 2 exp{ _ L
stress tensor = Tp

IXpx
Ny’

(45

, (46)

c where 7,=§,/(2\,) is the decay time for each normal

(opuy(t))=— NE J Foud nyPdr, (41)  mode. In general, application of a shear flow does not invoke

" stretching modes, thus, only the bending motion of the poly-

whereP is the distribution function of the Gaussian chain atmer chain is considered in the expression fg(t). There-
timet andc is the number concentration of the beads. In Eqfore the intrinsic storage modulus and the intrinsic loss
(41), the solvent contribution is not included in the stress andnodulus argfG'(w)],=[, w Sinwt= 11 exd —t/7,]dt and
0p.xy(t) is the contribution from single polymers. Under the [G"(w)]p 3¢ o coswt Z,’;‘_l exd— t/rp] Given the expres-
shear flow, the distribution function of the polymer chainsion for\, in Eq. (A2) and{,=2N{, we have

follows P(t) = LP(t) — =, dmy @(t)F myP(t)] Where the op- 2
5 .my N<a g”L
eratorL dictates the free propagation of the polymer and the — p*2= mnp 2% Lp<N
second term is due to the external flow. To first order in  _ _ 37Ky T 47)
perturbation, we have P N*a3¢
~oa, P '=7ip Lp=N,
37 KgTLp
— L(t—17)
P(t) f_ € ™ Po(7)d7, (42) which describes both the flexible chain whep<N and the

) o S o stiff rod whenL ,=N. In the limit L ,=1/2, the above-given
where Py= P4 is the equilibrium distribution. Substituting expression recovers the time constantsgfdr normal mode

Eg. (42) into Eq. (41), we find of the Rouse chaiff The expressions fofG’(w)], and
Cc [G"(w)], simplify in the following two cases:
np(t)zﬁﬁ<2 Fx(DF ny(1) 2 T 0)Fy(0) ), (1) In the low frequency limit, o7;<1 and w7}
n n

43) <1[G'(w)]p, and[G"(w)], are approximated as
25 -4_ 4 2 _
which is the linear response expression found in[ ()]~ (@) 2p_1p "=7(w7)7/90,  Lp<N
literature36384647Applying the Gaussian factorization to the P (0r)?Z)_1p 8= 7®(w7])%9450, Lp=N,
above-given expression leads to (48
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FIG. 6. The intrinsic and loss storage modulus for a flexible chain with 5000FIG. 7. The intrinsic and loss storage modulus for a semiflexible chain with
beads and the persistence length taken as 5. At low frequeri@iés,) 5000 beads and the persistence length taken as 500. At low frequencies,
scales as»? andG"(w) scales asv. At high frequencies, botts’ (w) and G'(w) and G"(w) scales asv? and w, respectively. At high frequencies,

G"(w) scale asw?. both G’ (w) andG"(w) scales aso'.
and o (w7)2PmI[3 sin(7/3)], L,<N 52
(G (@)]p= ()Tl 7 sin@l7)], L,=N
w’TlE;:lp_ZZszTl/G, Lp<N and
[G”((U)]pNI 5 —4_ 4 '190. L.=N (49)
0T12p-1P =7 0T /O0, Lp=N. (&) (071)?*m/[3 cogm/3)], L,<N 53
Therefore,[G’(w)], and[G"(w)], are proportional taw? P (wr)PTmI[ T cog wiT)], Lo=N,
aLmi a,\)l respectively, and reduce to the stiff rod limit when which are proportional t@?3 and w7, respectively.
p/ .
(2) In the high frequency limitw;>1 andw7;>1, the
sum overp is approximated by an integral, so that Vil. CONCLUDING REMARKS
In Secs. Il and lll, we formulated the semiflexible
, N (wry)Y2wi[4 sin(w/4)], Ly<N Gaussian chain with analog to the Ornstein—Uhlenbeck ran-
[G'(@)]p~ wr Y4718 sin 7/8 L.=>N 50 Gom walk process and incorporated the persistent length into
(wry)""ml[8sin(w/8)], L,
the Rouse model. The mean square bead—bead distance
and (R2,) is studied for different degrees of stiffness. For a flex-
ible chain, the mean square distance exhibits the scaling re-
o N (wr1)7/[4 cogm/4)], Lo<N gy lation for a random Gaussian cofR2 ) =2L ,[n—mlaj;
[G"(w)]p~ wr)Y47/18 cog /8 L.=N. (52) while for large persistence length, it scales as a rigid rod,
( l) [ i )]1 p

(R2_y=|n—m|?a3. To study the intrachain motion of semi-
For the stiff chain, the bending motion has¥* dependence flexible chains, the evolution R, is calculated based on

at high frequency, which implies;p(t)oct‘l’4 whent<rj. the normal mode decomposition of the Langevin equation of
This is consistent with the findings of the polymer bendinga semiflexible polymer chain. The resulting Green’s function
motion in Refs. 48 and 49. resembles a Gaussian process within a potential of mean

As shown in Figs. 6 and 7, numerical calculations of theforce. The Brownian dynamics of the semiflexible chain
intrinsic storageG’(w) and loss moduliG”(w) from the  shows that the correlation functidiR,(t)-R,n(0)) has a
viscoelastic response functiop,(t) in Eq. (46) confirm the ~ much longer time scale for a stiff chain than for a flexible
two different scaling regions for both flexible and semiflex- polymer.
ible chains. In the numerical calculation, the number of In Sec. IV, we have considered the fluorescence resonant
beads on the polymer chain is taken as 5000, the persisteneeergy transfefFRET) process on a semiflexible chain,
lengthL, is 5 for the flexible chain and 500 for a semiflex- where a donor—acceptor pair attached torttieand themth
ible chain. polymer beads are used to probe the conformational dynam-

In 6 solvent, the intrinsic moduli for the semiflexible ics. The fluorescence lifetime correlation function and the
chain can be calculated with, obtained by the preaveraging FRET efficiency correlation function are closely related to
method in standard textbodRas shown in Appendix D. the normalized distance correlation functiggt). Thus both

(1) In the low frequency limit, similar to the above- the lifetime correlation and the FRET efficiency correlation
mentioned derivatior,G’(w) ], and[G"(w)], are still pro-  can be employed as possible measures of the intrachain dy-
portional tow? and , respectively. namics. Furthermore, the instantaneous diffusion coefficient

(2) In the high frequency limit, due to finite time resolution,;, has been calculated within
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the theoretical model. Ag,,— 0, the instantaneous diffusion 3kgT N"2r14p , 1- b 5
coefficient is obtained from the independent diffusive motion =~ U= 8aZ & ﬁ(unJrl_ Un)“+ m(umﬁ Un)
of the donor and acceptor sites. When measured with finite 0

time resolution, the instantaneous diffusion coefficient 3kgT , ~
— . + —(ui+

D(R2) = (R2)[ 1~ 62(tin) Utgint R2nf 1 (toin) 1P/t i a2 (Ut UN-), (AD)

much smaller in the collapsed structure than in the ordered
structure, and the variation has a quadratic dependence avhereu,=R,.;—R, is the bond between theth and the
the donor—acceptor distanBg,,. Some of these predictions n+1th beads. In the continuous limit, the potential energy
are in qualitative agreement with reported experiméhts.  reduces to Eq(5) in Sec. Il. Applying the transform of Eq.

In FRET experiments, the intrachain dynamics usually(7), we can decompose the potential energy into three parts
occurs on a much longer time scale than the energy trandJ=T,+T,+ T3, where
fer reaction. In Sec. V, the FRET lifetime is discussed in
the fast reaction limit. With inhomogeneous cumulant expan-_.  3KgT 1+b 3 )
sion, we have shown that the lifetime is a weighted reac- '~ 8a2 1-b &y (Un4-17~ Un)
tion time for a given initial configuration;=K(Ry) !

N-2

X exf{—DS, 4,d,K(Ro)/K(Ro)?]. When the intrachain re- _12NkgT N§ o Ltb _p7 1+b
laxation process is extremely slow,— 0, this expression a(Z) &1 7P1-b 2N 1-pb ' ¥

recovers the static limit, i.ez=K ™1, and thus, the distribu-
tion function of the donor—acceptor distance can be mapped 3kgT 1—b N-2
out from the single-molecule lifetime measurements. Furl,=—— E (Ups1+Up)?

thermore, recent measurements of the viscosity-dependent 8ag 1+b =
intramolecular quenching rate provide detailed information 12NkgT N1 1_p pr pr 1-b
from the reaction-controlled limit to the diffusion-controlled ~ =——%— > xg si? 5= co§ 5—— — - Tg,
limit.3334%9Thus systematic studies and detailed analysis of a p=1 "1tb 2N 2N 1+b
the ensemble averaged lifetime is necessary to better under-
stand the polymer dynamics. T _3keT (U242
: . . 37 4,2 M1 N—-1

The macroscopic viscoelastic response of a polymer 4ay
chain is related to the bead dynamics on a single polymer by N—1
Eq. (44), from which the intrinsic elastic moduli are derived. _— ZLIKTBT E X X. Siré pm Sin? am
Explicit evaluations of the elastic storage modulus and the ag pa=1 " 9T 2N 2N
elastic loss modulus are performed with the consideration of
the persistence length,. Our expressions exactly recover X[(—1)PFa+ l]cosp—w COSQ_W.
the results for the Rouse chain in the linti,—1/2, and 2N 2N

predict the correct scaling over frequency for the bendingl‘herefore in the larga! limit, the off-diagonal terms arsl

motion of a stiff polymer in the stiff rod limit.,=N. times smaller than the diagonal terms, and we approximatel
Single-molecule FRET measurements of the semiflexible 9 ' PP y

s . . . . . diagonalize the potential ener in normal modés,
chain yield rich information about intrachain motion, for ex- ngl 2 P 9y
; . . L ~3 01 NpXp/2 with
ample, mean square distance, distance correlation function, ~P

instantaneous diffusion coefficient, and intrinsic viscosity. 24NKkgT pr pr pr
Further refinements of single-molecule spectroscopy will ~ \p=——j3— sir? 5N 2L, sir? TN cog 5N
provide more accurate methods to examine the details of the 0 P (A2)

intra-polymer interactions and lead to better understanding of
the related issues such as protein folding and self-assembiyhere 2 ,=(1+b)/(1—b) is the persistent length. In the
of biological systems. Further consideration of hydrody-jimit of the flexible chain, the persistent length is relatively
namic and excluded volume effects can be implemented i8mall compared to the contour length of the chain, the sec-

the theoretical model for a semiflexible chain. ond term dominates and yields
N 2ANksT  _pm 1 2P 37%keT
a2 M aN 20, % oN T NadL, P
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APPENDIX A: APPROXIMATE NORMAL MODES modes,
OF SEMIFLEXIBLE CHAINS 2 2 2| 2 4
37 k;Tp ( m tp 2)~ 3kBT7T2Lpp4 AD)
In a semiflexible chain, the potential energy is P NaglL, N N®ag
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In this expression, all the normal modes will be suppressed
for a rigid-rod-like chain forL,—c while keeping only the Ped an):f dx,o
center of mass motion, which is a deficit of the approximate

normal modes we obtained in this section. Full motion of the

chain can be observed from numerical solutions of the origi- =
nal equation of motion in Eq6).

N—1
an_ pzl Cng Pecﬁxp)

—-3/2 3R§m
ex’{ - 2<Rﬁm>]’ (89

where cumulant expansion over the Gaussian normal modes
and Eq.(B4) are applied. In a similar fashion it can be shown
APPENDIX B: GREEN'S FUNCTION that the joint distribution foRR,,(t) andR,(0) is
FOR THE SEMIFLEXIBLE GAUSSIAN CHAIN P(Ryn(t),t,Rum(0))

2 2
?(an>

As demonstrated in Appendix A, the potential energy of
a semiflexible Gaussian chain is approximately diagonal and
quadratic in normal coordinates as shown in Appendix A.
The evolution of the normal modes follows the Smolu- e p{ 3[R2, (1) —2¢(1)Rym(t)*Rnm(0) + R2 (0]
X0 —

chowski equation, 2<Rﬁm)(1—¢(t)2) ,

471_2 —-3/2
= T<R§m>2(1_¢(t)2)}

P
= LP(, B7
and the evolution oR,,, is described by the corresponding
with Green'’s function,
i (k 2 d ) - G(Rnm(1),t|Ram(0))
B X
i1 & 0%, o _ P(Ron(1),t,Rom(0))
Solution of the above-given Fokker—Planck equation gives PedRam(0))
the Green’s function 2 32
_ _7T 2 1— t)Z)
G(Xp,t|Xp(0 |13 (REm (1= (
27kgT A 32 3(Rnm(t) — ¢(1)Rym(0))?
—H [ kg ( B XF{ 2_,{)” Xexp{— ( nm(z) #(t) nmg ))]. B8
Ap gp 2(Rim (1= o(1)7)
2
SN-I Lx,—x (o)exp( _ "_t” APPENDIX C: FRET RATE DISTRIBUTION AND
X exp p=LRTP TP {p CORRELATION OF SEMIFLEXIBLE GAUSSIAN CHAIN
2kBT( 1—exp< 2§—t)> The FRET rate depends on the distaft®éetween the
p

donor and the acceptor &(R)=kg(Rr/R)®, whereRg is
(B2)  the Faster radius at which the transfer efficiency is 50%, and
ke is the energy transfer rate Ri=Rg. However, this rate

and the equilibrium distribution of normal modes : X - )
expression diverges &—0 where the transition dipole—

i 2mkgT) %2 EN Ia A pX p dipole interaction no longer holds. To facilitate the calcula-
PedXp) = pl;[l No 2k T (B3)  tion, we choose a slightly modified expressionkqfR) as
The correlation function of th@th normal mode is calcu- K(R)= F (C1)
lated directly from above as(x,(t)-x,(0))=3kgT/\, e+ (RIRg)®’

xexgd —A\gt/g,], and the equilibrium average &, and the
correlation betweerR,,(0) and R,(t) can be evaluated
according to the decomposition in Ed.2),

wheree is a small quantity that denotes the breakdown of the
weak dipole—dipole interaction whéis extremely small. It
is shown later in this section that the average transfer rate
(K(R)) is a large quantity becauseis usually small. The

(R2y=2 (Cﬁm)z)\—B, (B4)  overall decay rate of the fluorescence on the donor molecule
p=1 P can be approximated by neglecting the radiative decay. The
. (Rm(t)*Rnam(0)) three-dimensional Fourier transform of the rate function
= K(R) is
<R2m>
2 1/6
\p K(g)= ﬂ—[exq qRFel’6]+ex;{ ARee
=[(RAm 1" 12 (c nm>2 exp —2°t|.  (B9) 3q€’ 2
p

. : . : . . V3 (V3
Rnm is @ Gaussian variable because it is a linear combi- —-co 7qRFel’6 +v3sin ?qRFel’6 .
nation of Gaussian normal modes. The equilibrium distribu-
tion of R, is (C2

Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



11022  J. Chem. Phys., Vol. 117, No. 24, 22 December 2002 Yang, Witkoskie, and Cao

Consideringe is a small number angRge*6<1, the leading  where the superscript “ZM” means the corresponding quan-

order ofK(q) is tities in the Zimm model,
@ 2m2R3ke - #'=ny(127°Nagp) "2, (D4)
D~———F7»
3Ve v 67%keT 05
which approximates energy transfer by a delta-function sink. P Nag b
BecauseR,, is a Gaussian variable with distribution Eq. IM_ _ZM 32 (D6)
(B6), the cumulant expansion yieldsexdig-R,m]) o TTP
=exp[—q2<Rﬁm)/6], and the average ové&(R,,) and the It is obvious that all the above-given relations reduce to the
correlation ofK(R,,) are evaluated as Rouse model wheh ,=1/2.
In the short chain limit wherh. >N, the corresponding
(K(an)>=f K(a)exd — q*(R3)/6] quantities are
i Lo~ (127%)27,20p VN2, (D7)
k \/3”(<Rﬁ’“>)3/2 (c4) 3mkeTL,
= 5 ) ™ K
FV 26 RIZ: )\p~N3—p4, (D8
K(R,m(1))G(H)K(R,m(0
< ( nm( )) ( ) ( nm( ))> szTlp—wz_ (D9)
K K < > 2+ 12
(PK(q")ex —6 LA°Fa 1T. Bache, W. E. Moerner, M. Orrit, and U. P. Wil&ingle Molecule
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