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Single-molecule dynamics of semiflexible Gaussian chains
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A semiflexible Gaussian chain model is used to determine the statistics and correlations of
single-molecule fluorescence resonant energy transfer~FRET! experiments on biological polymers.
The model incorporates a persistence length in a Rouse chain and describes single-chain dynamics
with normal modes. The hydrodynamic interaction is included in the dynamics of the semiflexible
Gaussian chain on the preaveraging level. The distribution functions of the fluorescence lifetime and
the FRET efficiency provide direct measures of the chain stiffness, and their correlation functions
probe the intrachain dynamics at the single-molecule level. When measured with finite time
resolution, the instantaneous diffusion coefficient for FRET is much smaller in the collapsed
structure than in the coiled structure, and the variation has a quadratic dependence on the donor–
acceptor distance. In the fast reaction limit, single-molecule FRET lifetime measurements can be
used to map out the equilibrium distribution function of interfluorophore distance. As an example of
microrheology, the intrinsic viscoelasticity can be extracted from single-molecule tracking of the
Brownian dynamics of polymers in solution. ©2002 American Institute of Physics.
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I. INTRODUCTION

Single-molecule techniques provide a powerful meth
to measure the conformational structure and dynamics
synthetic and biological polymers. Examples include rec
progress in studying the response of single DNA molecu
under twisting and stretching and probing the relaxation
namics of polymers on short time and length scales. O
promising candidate for studying these time and len
scales in polymers is fluorescence resonant energy tran
spectroscopy~FRET!. In these experiments donor and acce
tor dye molecules are attached to the polymer at two dif
ent points. A laser is used to pump the donor dye to
excited state. Depending on the distance between the d
and acceptor molecule, nonradiative energy transfer from
excited donor dye to the acceptor dye may occur, which
sults in the fluorescence of the acceptor dye molecule.
light intensity at the fluorescence frequency of the accep
molecule is strongly dependent on the distance between
two molecules and can be used as a measurement of
distance. With current synthetic techniques, the position
the donor and acceptor dyes on a polymer like DNA can
controlled, which allows us to explore the polymer dynam
on any length scale.1–14 This technique has been used
investigate the denaturation of chymotrypsin inhibitor, t
dynamics and folding of single peptides, the fluoresce
lifetime distribution of single TMR molecules, etc.12,15 A
similar technique based on the distance dependence o
electron transfer rate has recently been developed by the
group.2 Using a different set of single-molecule technique
Chu and co-workers observed the single polymer dynam
in steady shear flow, the relaxation of a single DNA m
ecule, the response of a flexible polymer to a sudden e

a!Electronic mail: jianshu@mit.edu
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gation flow, etc.16–18 In comparison with bulk experiments
these single-molecule experiments have several advanta
such as the removal of inhomogeneous averaging, the d
observation of intramolecular dynamics without the subtr
tion of the solvent background as is done in bulk measu
ments, and site-specific measurement of a polymer cha8

Motivated by the experimental progress, we analyze the
formation revealed by single-molecule measurements
calculate their single-molecule quantities based on
Brownian dynamics of semiflexible ideal Gaussian chain

An ideal polymer assumes random coil configuratio
and follows Gaussian chain statistics. Without the expl
consideration of the excluded volume effect and the g
metrical constraints, the simple Rouse model treats the c
nectivity between next neighbor pairs by harmonic bon
But biological polymers are stiff on the length scale rangi
from 5 nm for microtubes, 17 nm for actin, and up to 50 n
for DNA.13,14 Most single-molecule experiments are pe
formed on length scales where the polymer exhibits so
rigidity so that the Rouse Gaussian chain model will have
be extended. In Sec. II, we modify the Gaussian chain mo
by introducing the persistence length that prevents the p
mer from being flexible on all length scales. Similar mode
for semiflexible chain have been studied by Kratky a
Porod, Harris and Hearse, Freed, Fixman and Kovac, Ha
Thirumalai, and others.19–27 Interest in these semiflexible
chain models is revived by the effort to model singl
molecule force measurements of proteins and DNAs. O
emphasis here is to formulate the semiflexible model us
the analog to the Ornstein–Uhlenbeck random walk proc
and thus incorporate the persistence length into the Ro
model in a natural and rigorous way.

In order to interpret single-molecule experiments and
tract the desired information on polymers, we need to cal
late the dynamics of semiflexible chains. In Sec. III, w
0 © 2002 American Institute of Physics
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solve the Brownian dynamics by performing a normal mo
decomposition of the Langevin equation of a polymer cha
This normal mode decomposition is similar to the stand
decomposition performed in the Rouse and Zimm mod
with a modification to account for the short length scales t
this paper considers. The model calculation can be ela
rated by including excluded volume and hydrodynamic
fects under a similar approximation made in the Zim
model.28,29 Using the normal mode approach, we calcula
distance–distance correlation functions that are relevant
single-molecule measurements.

In FRET experiments, people can measure the separa
of two dye molecules attached to the polymer chain. T
fluorescence energy transfer reaction usually occurs o
nanosecond time scale while the intrachain relaxation ta
millisecond or even longer.9,11,12Hence the FRET lifetime as
well as the FRET efficiency is a ‘‘snapshot’’ of the transie
configuration. The correlations of the FRET lifetime and t
FRET efficiency reveal the slow intrachain relaxation p
cess that modifies the donor–acceptor distance. In Sec. I
the distribution ofE is derived to show different features t
distinguish collapsed and coiled conformations. In Se
IV A and IV B, the FRET efficiency and the lifetime corre
lation functions are formulated for the semiflexible cha
model introduced in Sec. II. These two correlation functio
are directly related to the distance correlation function ch
acterizing the intrachain motion, and thus provide expe
mentally reliable measures to probe the conformational
namics. Furthermore, each measurement of the don
acceptor distance in real experiments corresponds to a l
number of polymer configurations. To differentiate them,
instantaneous diffusion coefficient is calculated in Sec. IV
to probe the variation of the donor–acceptor distance w
time, and yielding information about the mean square d
tance as well as instantaneous distance between the dye
ecules.

To model FRET experiments, we treat the reaction
namics as a convolution of the polymer motions and
actual energy transfer event which depends on the separ
between probes. Without the intrachain motion, each fluo
cence lifetimet corresponds to a specific donor–accep
distance Rnm . And the fluorescence lifetime distributio
function directly reflects the equilibrium distribution of in
trafluorophore distance.12 However, the slow intrachain
dynamics slightly modifies this correspondence and bri
another configuration-dependent weighting factor. In Sec
the FRET lifetime in the fast reaction limit is discussed
incorporate the intrachain motion during the energy trans
reaction. Inhomogeneous cumulant expansion oft leads to a
weighted inhomogeneous reaction time, which serves a
perturbative correction to the static lifetimet5K21. Thus
through single-molecule lifetime measurements one can
out the distance distribution function even with intracha
relaxation.

The single-molecule spectroscopy and imaging direc
track the Brownian dynamics of polymers in solution, whi
determines the viscoelasticity property from the correlat
function of single molecules. The single-molecule approa
has become known as microrheology in analogy to rheolo
Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP
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which studies the viscoelasticity behavior through the
sponse of the bulk material to applied mechani
perturbation.30,31 Evidently, rheology and microrheolog
measurements are related to each other, and this relation
will be explained in Sec. VI through the example of th
intrinsic viscosity. The theoretical calculation of polym
viscosity has a long history, ranging from Kirkwood
classical treatment, to the formulation by Fixman, Bixon a
Zwanzig, etc.32,35–37 In Sec. VI, we relate the correlatio
function of intrachain dynamics on the single polymer
intrinsic viscosity and evaluate the viscosity explicitly wi
the consideration of the persistence length. Our expres
for the intrinsic viscosity is related to the correlation functio
formula discussed by Felderhof, Deutch, and Titulaer,38 but
is further simplified for the application to single-molecu
measurements of Gaussian chain dynamics.

II. SEMIFLEXIBLE GAUSSIAN CHAINS

Before calculating the dynamics, we first develop t
Gaussian model with a persistence length. Consider a
cretized version of a continuous polymer chain without e
plicit account of the excluded volume effects. Thenth unit of
the polymer is at a position denotedrn . The bond vector
un5rn2rn21 separates two neighboring units of the pol
mer chain. It should be noted that the bond vector does
correspond to an actual chemical bond nor do the subu
correspond to a single monomer.

Although the focus of this paper will be on single pol
mer dynamics, we start by examining the equilibrium dist
bution of the polymer chain. Averagingu and u2 over all
possible orientations gives^un&50 and^un

2&5a0
2 with a0 the

bond length. To describe the rigidity of the polymer cha
we define the correlation between two bonds as^unum&
5a0

2bun2mu with 0,b,1. If b51, everyun must point in
the same direction resulting in a rigid rod. Ifb50, there is no
correlation between two bond vectors and the chain is
ideal Gaussian chain on all length scales. The total lengt
the polymer is the sum of all the individual bond vecto
R5(n51

N21 un , whereN21 is the number of bond vectors
Using the relations between bond vectors we have^R&50
and

^R2&5(
nm

^unum&5F ~11b!

~12b!
~N21!22b

~12bN21!

~12b!2 Ga0
2.

~1!

In most applications to polymers the second term would
neglected because of the largeN limit, which gives us the
expected result^R2&5Lk(N21)a0

2, where Lk5(11b)/
(12b) is the Kuhn length. The persistence length is rela
to the Kuhn length byLp5Lk/2. Taking the continuous limit
of the discretized model we haveb5exp(21/Lp) and
^u(s)u(s8)&5a0

2 exp(2us2s8u/Lp), where the variabless and
s8 are the continuous analog of the index for the subunits
allow us to trace the positions of the subunits on the polym
In the continuous limit, the expression for^R2& becomes
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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^R2&5E
0

N21E
0

N21

ds ds8 exp~2us2s8u/Lp!

52a0
2Lp~N21!22a0

2Lp
2@12e2~N21!/Lp#. ~2!

For the long chain length limit we get the expected scal
relation for a random Gaussian chain^R2&52(N21)Lpa0

2.
In the short chain length limit, we also have the expec
relationship for a rigid rod̂R2&5(N21)2a0

2.
It is known that the Gaussian process with exponent

decay correlation defines the Ornstein–Uhlenbeck proc
The three-dimensional equilibrium distribution function
denoted asPeq(u)}exp@2bU# with the exponential func-
tional given by

bU~u!5
3

2a0
2~12b2! (

n51

N22

~un112bun!21
3u1

2

2a0
2 , ~3!

whereU is understood as the potential energy of the Gau
ian chain. For the purpose of further calculations, the pot
tial function can be cast into

bU5
3

2a0
2~12b2! (

n51

N22 F S 11b

2 D 2

~un112un!2

1~12b!2S un111un

2 D 2G1
3

4a0
2 ~uN21

2 1u1
2!

5
3

4a0
2 (

n51

N22 FLp~un112un!21
1

Lp
S uN111un

2 D 2G
1

3

4a0
2 ~uN21

2 1u1
2!, ~4!

whereLp is the persistence length defined earlier. Note
extra terms for the initial and final vectorsu1 and uN21 in
Eq. ~4! are necessary for satisfying the chain homogene
i.e., the length of each bond is constant on average.
Boltzmann distribution generated from this potential fun
tion rigorously reproduces the Gaussian statistics as in
duced in Eq.~1!. For a long Gaussian chain, we take t
continuous limit as

bU@u~s!#5
3

4a0
2 F E

0

N21

ds LpS ]u

]sD
2

1
1

Lp
u2G

1
3

4a0
2 ~uN21

2 1u1
2!, ~5!

where the bond index is treated as a continuous varia
Clearly, from Eq.~5!, the semiflexible model exhibits th
same long chain asymptotic behavior as the original Ro
modes as well as the proper behavior for a stiff rod
shorter length scales.

Similar results have also been obtained by Winkl
Reineker, and Harnau39 using the maximum entropy metho
and by Ha and Thirumalai27 using a mean-field approach. A
noted by Lagowski, Noolandi, and Nickel,40 the Gaussian
chain thus generated is homogeneous and has an expon
decay correlation, which are the properties of the Ornste
Uhlenbeck process. Earlier adaptations of the process to
Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP
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chains treat the boundaries differently and do not lead to
chain homogeneity implied in the Gaussian statistics.

III. BROWNIAN DYNAMICS OF SEMIFLEXIBLE CHAINS

Single-molecule experiments measure trajectories of
trachain motions of polymers, and the interpretation of su
measurements is helped by model calculations of polym
dynamics. The Brownian motion of a polymer chain is go
erned by the Langevin equation for each bead,

z ṙn52¹nU1fn , ~6!

where fn is the random force with local Gaussian distrib
tion, ^fn(t)&50, ^ f na(t) f mb(t8)&52zkBTdmndabd(t2t8).
Although the equations of motion are straightforward, t
solutions to these equations are not trivial. To make the pr
lem more tractable, we define normal modes so that the
namics of each mode are independent and the equation
motion for these modes are simplified. For the flexib
Gaussian polymer chain, one usually defines the Rouse
mal modes, which have a Fourier decomposition into fu
tions of the form cos(ppn/N), wheren is the bead index,N is
the total number of beads, andp is an integer denoting the
normal modes. The sin(ppn/N) components are zero by th
requirement that the derivative be zero at the end points
the polymer chain. Because the applications that we are
amining are for semiflexible chains, it is advantageous
modify the Rouse mode to treat the end units more rig
ously. The normal modes are defined as

rn5x012 (
p51

N21

xp cosF S n2
1

2D pp

N G , ~7!

where p is an integer denoting the modes. This definiti
removes the artificial constraint on the end point derivativ
previously imposed in the Rouse normal mode decomp
tion. For the semiflexible Gaussian chain, the normal mo
defined in Eq.~7! approximately diagonalize the potenti
and simplify the dynamics of the polymer chain~see Appen-
dix A!. The equation of motion for thepth mode becomes

zp

]xp

]t
52lpxp1fp , ~8!

where

lp5
24NkBT

a0
2 sin2

pp

2N S 2Lp sin2
pp

2N
1

1

2Lp
cos2

pp

2ND ,

~9!

zp52Nz2d0,pNz, ~10!

^ f pa~ t ! f qb~ t8!&52dpqdabzpkBTd~ t2t8!. ~11!

Evidently, the random force acts on each mode indep
dently and satisfies the fluctuation–dissipation relation.

The concept of normal modes in polymer dynamics h
been directly applied to the interpretation of single-molec
experiments. For example, Winkler has calculated the nor
mode relaxation dynamics of stretched flexible cha
molecules,41 which agrees with Chu’s experimental data.17 In
the limit Lp→1/2, the above-given normal modes recov
the Rouse model discussed in standard textbooks.29 For a
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



xa
q.
o

le
ts
a
d

o
w

lu

ua
,

t-
s

n in
the
on

in as

de
or-
f
. In

11013J. Chem. Phys., Vol. 117, No. 24, 22 December 2002 Single-molecule dynamics of semiflexible Gaussian chains
rigid-rod like polymer,Lp→`, all the normal modes will be
suppressed, keeping only the center of mass motion. E
numerical solution of the original equation of motion in E
~6! will keep both the transnational and rotational motion
the rigid rod.

Through the Brownian dynamics of the semiflexib
chain, one can relate single-molecule FRET measuremen
the correlations between the sites on the polymer ch
where two dye molecules are attached. We define the
tance between the two beads on the polymer chainRnm

5rn2rm , wherem andn correspond to the index of the tw
points on the polymer chain. In terms of normal modes
can express this quantity as

Rnm5 (
p51

N21

cnm
p xp

with

cnm
p 524 sin

pp

2N
~n2m!sin

pp

2N
~n1m21!. ~12!

The propagation of the normal modes follows the Smo
chowski equation in a quadratic potential~see Appendix A!.
The correlation betweenRnm(0) andRnm(t) is

^Rnm~ t !•Rnm~0!&5 (
p51

N21

~cnm
p !2

3kBT

lp
expF2

lp

zp
t G . ~13!

At t50, the above-noted expression gives the mean sq
distance between thenth and themth beads along the chain
Rnm

2 , as is given in Eq.~B4!. Direct evaluation of the sum in
the equation is plotted in Fig. 1, whereRnm

2 shows a qua-
dratic dependence onun2mu for small un2mu and a linear
dependence onun2mu for large un2mu.

~1! In the short time region, summation over the firs
order Taylor expansion of each exponential function lead

^Rnm~ t !•Rnm~0!&5^Rnm
2 &26Dt,
s
io
r
it

r
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so each bead undergoes instantaneous diffusive motio
three-dimensional space without feeling the interaction of
polymer chain. This short time behavior does not depend
the persistence length and exists in the ideal Rouse cha
well.

~2! In the intermediate time region, each normal mo
decays with various rates, and contributes jointly to the c
relation function^Rnm(t)•Rnm(0)&. For different degrees o
stiffness, the correlation function has different time scales
the largeN limit, the summation overp can be approximated
by an integral from 1 to infinity, resulting in

FIG. 1. The mean square distance between thenth and themth beads given
in Eq. ~14! for a polymer chain with 5000 beads. Herea0 is taken as the unit
length and the persistence lengthLp is taken as 500. As shown in Eq.~C6!,
Rnm

2 has a quadratic dependence onun2mu for un2mu!Lp , and is propor-
tional to un2mu for un2mu@Lp .
^Rnm~ t !•Rnm~0!&55
2a0

2

p
Lp

3/2~n2m!2t* 21/2GS 1

2
,

p2t*

4N2Lp
D , Lp!N

a0
2

2&p
Lp

23/4~n2m!2t* 1/4GS 2
1

4
,
p4Lpt*

4N4 D , Lp>N,

~15!
the

i-
ose
at
ults
epa-
im-

we
ic
ded
where t* 56Dt/(a0
2) is the reduced time, andG(a,z)

5*z
` xa21 exp(2x)dx is the incomplete gamma function. A

shown in Fig. 2, the normalized distance correlation funct
f(t)5^Rnm(t)•Rnm(0)&/^Rnm

2 & decays nonexponentially fo
both flexible and stiff chains. The decay time increases w
the persistence length.

~3! In the long time region, only the slowest mode su
vives, and the correlation function becomes

^Rnm~ t !•Rnm~0!&5~cmn
1 !2

3kBT

l1
expF2

z1

l1
t G , ~16!
n

h

-

which represents the fundamental relaxation mode of
polymer chain.

At this point, the model that we have constructed is sim
lar to the Rouse model, where the only interactions are th
dictated by the connectivity of the polymer. It is known th
the Rouse model does not reproduce experimental res
because spatial interactions between two monomers s
rated by large distances along the polymer backbone are
portant. To develop a more realistic polymer model,
should include real polymer interactions like hydrodynam
and excluded volume effects. These effects can be inclu
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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by similar approximations introduced in the Zimm mod
We discuss hydrodynamic interactions briefly in Append
D.

From the above-mentioned analysis, it is apparent
note that the interfluorophore distanceRnm follows an effec-
tive diffusion process, with the Green’s function in Eq.~B8!
characterizing a Gaussian process with nonexponential
relation. *0

` f(t)dt provides a time scale for the effectiv
diffusion, the effective diffusion coefficient in the potenti
of mean force can be formulated as 6Deff *0

` f(t)dt5^Rnm
2 &,

which is generally different from the diffusion coefficien
2D used in Pastor, Zwanzig, and Szabo’s work,42 whereD
5kBT/z is the diffusion coefficient for each polymer bea
As discussed later in Sec. IV C, the diffusion coefficient 2D
only reflects the diffusive motion of each polymer bead
dependently and contains no information about the collec
motion of the polymer chain.

IV. SINGLE-MOLECULE FRET OF SEMIFLEXIBLE
CHAINS

Single-molecule fluorescence resonant energy tran
~FRET! allows us to measure the separation of donor a
acceptor dye pairs on a single polymer chain. In a sim
experimental setup, the donor and acceptor are located
specific sites on the polymer chain. According to Fo¨rster
theory, resonant energy transfer is mediated by the dipo
dipole interaction, and the transfer rate depends on
donor–acceptor separation asK(R)}1/R6. The inverse
sixth-power law leads to a sensitive probe of intrachain
namics, which has been exploited extensively in rec

FIG. 2. Log plot of the normalized distance correlation functionf(t) for a
polymer chain with 5000 beads.Lp55 for the flexible chain andLp5500
for the stiff chain.za0

2/6kBT is taken as the time unit.f(t) decays nonex-
ponentially with time. Obviouslyf(t) decays on a much longer time sca
for the stiff chain than for the flexible chain.
Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP
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single-molecule experiments. To interpret the FRET exp
ments and extract the desired information, we calcul
single-molecule quantities for the intrapolymer energy tra
fer process, which is controlled by the polymer conform
tions.

A. Distribution and correlation function of FRET
efficiency

With the help of two photon-counting detection cha
nels, one can track the real-time evolution of intramolecu
and intermolecular distances of a freely diffusing individu
macromolecule.8 The instantaneous FRET efficiencyE(t) is
calculated from the donor and acceptor emission intens
I d andI a , using the formulaE5@11gI d /I a#21, whereg is
a correction factor. According to the Fo¨rster theory, the effi-
ciency E has a strong dependence on the interfluoroph
distance,E5@11(R/RF)6#21, whereRF is the Förster ra-
dius. The Fo¨rster energy transfer occurs on the nanosec
scale, whereas conformational changes of polymers usu
occur on the millisecond scale or even longer. Therefore
donor and acceptor fluorophores quickly reach kinetic eq
librium under a laser pump, and hence the efficiencyE pro-
vides ‘‘snapshots’’ of the polymer configurations over tim
The correlation of the FRET efficiency, defined as,

Cnm~ t !5
^E~ t !E~0!&2^E&2

^E2&2^E&2 , ~17!

provides additional information on conformational dynam
on a large time scale that is difficult, and sometimes imp
sible, to obtain by conventional techniques.9

For the semiflexible Gaussian chain introduced in S
II, we evaluate the correlation function explicitly. Assumin
that the donor and acceptor dye molecules are attached t
nth and themth beads of a single semiflexible polyme
chain, the FRET efficiencyE is related to the interfluoro-
phore distanceRnm by

E~Rnm!5
1

11~Rnm /RF!6 . ~18!

The interfluorophore distanceRnm is governed by the
Brownian motion of the polymer chain. The equilibrium di
tribution and evolution derived in Appendix B are

Peq~Rnm!5F2p

3
^Rnm

2 &G23/2

expH 2
3Rnm

2

2^Rnm
2 &J , ~19!

G~Rnm~ t !,tuRnm~0!!

5F2p

3
^Rnm

2 &~12f~ t !2!G23/2

3expH 2
3~Rnm~ t !2f~ t !Rnm~0!!2

2^Rnm
2 &~12f~ t !2! J , ~20!

wheref(t) is the normalized correlation function of the in
terfluorophore distance given in Eq.~B5!. Thus the average
efficiency and the correlation function can be explicit
evaluated as
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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^E&5E d3RnmE~Rnm!Peq~Rnm!,

Cnm~ t !5E E d3Rnm~ t !d3Rnm~0!E~Rnm~ t !!E~Rnm~0!!

3G~Rnm~ t !,tuRnm~0!!Peq~Rnm!. ~21!

For smallRF , we can approximate Eq.~18! as a delta
function and show that

^E&}F ^Rnm
2 &

RF
2 G23/2

, ~22!

Cnm~ t !;@12f2~ t !#23/221. ~23!

In real experiments, the FRET efficiency measuremen
mainly performed in the regime whereRnm<RF and the ef-
ficiency is sensitive to the interfluorophore distance only
the close vicinity ofRF . Although it is difficult to obtain the
analytical expression of the FRET efficiency correlati
function under such condition, a numerical example plot
in Fig. 3 still shows the close relation betweenCnm(t) and
f(t). We have plotted three different cases in Fig.
^Rnm

2 &!RF
2 for a flexible chain,̂ Rnm

2 &;RF
2 for a short stiff

chain, and̂ Rnm
2 &@RF

2 for a long stiff chain. In the short time

FIG. 3. Comparison of the FRET efficiency correlation functionCnm(t) for
various^Rnm

2 &. a0 and za0
2/6kBT are taken as the length unit and the tim

unit, respectively. The Fo¨rster radiusRF is taken to be 5. The solid lines ar
the efficiency correlation functions, and the dot-dashed lines are the c
sponding distance–distance correlation functionf(t). ~a! Flexible chains
with N510, Lp50.5. ~b! Stiff chains withN510, Lp52.0. ~c! Long stiff
chains withN520, Lp52.0.
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d

,

limit, Cnm(t) is a combination of all the relaxation mode
while in the long time limit, only the fundamental mod
exists. As shown in Fig. 3,Cnm(t) always decays on the
same time scale as that off(t) for various stiffness and
chain lengths, thus providing a good probe of the intrach
dynamics.

Besides the FRET efficiency correlation function, t
distribution function of the efficiency is also a good measu
of the chain stiffness. In general, the efficiency distribution
obtained by transforming the equilibrium distribution ofRnm

into the efficiencyE of Eq. ~18! as

P~E!5A 3

2p

RF
3

^Rnm
2 &3/2~12E!21/2E23/2

3expF2
3RF

2

2^Rnm
2 &

S 12E

E D 1/3G . ~24!

As shown in Fig. 4, plots of the efficiency distribution wit
different mean square interfluorophore distance display
ferent features. As the mean square interfluorophore dista
increases, the FRET efficiency sharply shifts from the u
modal peak atE51, to the bimodal distribution, and then t
the unimodal peak atE50. These features are explored n
merically by Srinivas and Bagchi to distinguish the diso
dered and ordered conformations.43 The complicated feature
of the efficiency distribution implies that the average ef
ciency ^E& does not provide enough information of the di
tribution.

In a recent experiment, Weiss and co-workers inve
gated the single enzyme Staphylococcal nuclease with FR
The instantaneous FRET efficienciesE(t) and the correlation
functionsCnm(t) were evaluated for 100 labeled Staphyl
coccal nuclease molecules.9 It was observed that the correla
tion functions had a wide distribution of time constan
which demonstrates the complexity of the intrachain moti

e-

FIG. 4. The distribution of the FRET efficiency with the Fo¨rster radiusRF

as the length unit.Rnm5uRnmu is the mean square root of the donor
acceptor distance. AsRnm increases from 0.5RF to 2.0RF , the distribution
shifts from the unimodal distribution aroundE51, to the bimodal distribu-
tion, and then to the unimodal distribution aroundE50.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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B. Correlation of FRET lifetime

Optical methods developed recently are capable of tra
ing single molecules under physiological conditions in r
time. The environmental changes of individual molecules
duce the conformational changes of molecular configurati
on a much longer time scale than energy transfer. As a re
the dynamical tracking of lifetime information provides
measure of individual molecules in nonequilibrated and h
erogeneous systems, and offers details of single-mole
dynamics that are usually hidden in conventional ensem
measurements.

The decay of the fluorescence on the donor includes
diative decay and nonradiative energy transfer,

K5
1

tD
F11S Rnm

RF
D 26G , ~25!

where RF is the Förster radius andtD is the fluorescence
lifetime without acceptor. Since the intrachain dynamics
curs on a much longer time scale than the FRET process
polymer configuration remains the same when the FRET
curs, hence the lifetime is a ‘‘snapshot’’ at the transient c
formation,

t'
1

K
5

tD

11~Rnm /RF!26 . ~26!

Continuous ‘‘snapshots’’ of transient configurations rev
the correlation between two configuration-controlled lif
times, which reflects the slow intrachain motion that mo
fies the donor–acceptor distanceRnm . The lifetime correla-
tion function is defined as

Cnm~ t !5
^t~ t !t~0!&2^t&2

^t2&2^t&2 , ~27!

where^¯& is the average over various initial configuratio
of a given pair, and the configuration-controlled lifetimet is
related to the energy transfer efficiencyE discussed in Sec
IV A as t5tD(12E). Therefore, the lifetime correlation
function is exactly the same as the efficiency correlat
function in Eq.~17!, which can be used to monitor the intra
chain dynamics at the single-molecule level.

The efficiency measurement discussed in Sec. IV A a
the lifetime measurement determine similar quantities. B
measurements utilize the separation of the time scales fo
reaction and the diffusion processes to detect the dynam
evolution of microenvironments at the single-molecule lev
The lifetime method requires only one detection channel
with high time resolution usually in nanosecond scale, wh
the efficiency measurement requires simultaneously trac
donor and acceptor emissions but with relatively lower ti
resolution. Both methods are experimentally reliable
monitoring the intrachain motion in real time.

C. Instantaneous diffusion coefficient

In FRET measurements, the experimental sample w
the attached donor and acceptor dyes is either adsorbed t
glass surface or prepared in solution. Fluorescence image
the sample are detected by scanning the confocal volu
and photobleaching curves of donor and acceptor are sim
Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP
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taneously recorded with an integration timetbin . As a result,
the trajectories of the distance between two dyes are
tained. Each measurement of the interfluorophore dista
Rnm can correspond to a large number of polymer config
rations. To differentiate them, the variation of the distan
with respect to time is examined in order to understand
dynamic heterogeneity of structure.11 The instantaneous dif
fusion coefficient measured in these experiments is defi
as

D̄~Rnm~0!!5
1

6tbin
^~Rnm~ tbin!2Rnm~0!!2&G , ~28!

wheretbin is the experimental bin time due to the finite tim
resolution and^¯&G stands for the integration over th
Green’s function for a fixed initial separationRnm(0). For
the semiflexible polymer chain, we are able to evaluate
stantaneous diffusion coefficient directly with the Gree
function in Appendix B, giving

D̄~Rnm~0!!5^Rnm
2 &

12f2~ tbin!

6tbin

1Rnm
2 ~0!

@12f~ tbin!#
2

6tbin
. ~29!

This expression ofD̄(Rnm(0)) is a general result for any
Gaussian process and implies the following:

~1! As tbin approaches 0, only the first term survives a
the instantaneous diffusion coefficient reduces to 2D
52kBT/j, which describes the independent diffusive m
tions of the donor and acceptor sites and does not pro
any information of the chain-configurations or the intera
tions.

~2! As tbin approaches̀ , averaging Eq.~29! over the
initial position Rnm(0) yields the relation in the long time
limit, 6 D̄tbin52^Rnm

2 &5^(Rnm(tbin)2Rnm(0))2&, where D̄
is the diffusion coefficient of polymer beads.

~3! The mean square distance in equilibrium̂Rnm
2 &,

which is determined by the morphological structures of
polymer, relies on the condition of the solution.^Rnm

2 & in the
collapsed state is smaller than that in the coiled state,
^Rnm

2 & in the coiled state is much smaller than that in t
ordered state~rod, toroidal, etc.!. As a result,D̄(Rnm(0)) in
collapsed structures is much smaller than that in coiled st
tures.

~4! For a specific condition of solution when the me
square distance in equilibrium̂Rnm

2 & is fixed, the variation
of D̄(Rnm(0)) has aquadratic dependence on the initial di
tanceRnm(0)5uRnm(0)u.

These conclusions are in qualitative agreement with
cent experiments on PCN-4.11 Instead of two fluorophores
attached to the same chain, the donor and acceptor dye
ecules in the reported experiment are attached to each en
a double helix DNA molecule, respectively. Therefore t
quadratic dependence onRnm(0) is not exactly observed. I
was observed that the instantaneous diffusion coefficien
the unfolded state is one order of magnitude greater than
in the folded condition, which meanŝRnm

2 & in the folded
state is much smaller than that in the unfolded state.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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V. THE FRET LIFETIME DISTRIBUTION

In order to calculate the lifetime distribution, we co
sider a general scenario where the kinetics of the sys
described by

Ṗ~ t !5LP~ t !2KP~ t !, ~30!

whereP(@r #,t) is the probability distribution function of the
polymer chain andL is the propagation operator of the chai
As illustrated in Fig. 5, the depletion of the population
denoted byK and the intrachain motion is governed byL. At
zero time, we pump the donor dye to an excited state,
then monitor the lifetime distribution. The Laplace transfo
of Eq. ~30! yields

P̂~z!5
1

z2L1K
P0 , ~31!

where P̂(z) is the Laplace transform ofP(t) and P0 is the
initial population. To calculate the lifetime distribution func
tion, we take the average of Eq.~31! over the equilibrium
distribution Peq and obtain the equation for the surviv
probabilityN̂(z)5^(z2L1K)21&, where the angular brack
ets^¯& refer to the configurational average over the equil
rium distribution functionPeq, i.e., ^A&5* APeqd

Nr . From
N̂(z) we calculate the Laplace transform of the ensem
lifetime distribution as

f̂ ~z!512zN̂~z!5^~K2L!~z2L1K !21&. ~32!

In the sluggish environment,L!K, the relaxation of the
reactive system is extremely slow so that the reaction
depends only on the transient configuration, therefore,
lifetime is t5 P̂(0)'K21. The survival probability in
Laplace space becomesN(z)'^(z1K)21&, and the lifetime
distribution function is the static average over the equil
rium configuration, i.e.,

f ~ t !5E Ke2KtPeqd
Nr . ~33!

Under such conditions, the interfluorophore distance dis
bution as well as the transfer rate distribution can be
tained from single-molecule fluorescence lifetim
measurements.12 The ensemble averaged lifetime becom
the static average of the inhomogeneous lifetimet, ^t&
'^K21&.44

However, natural functions of biological polymers a
usually studied in solutions, where the static limit in Eq.~33!
does not apply. Although the energy transfer reaction occ
on a faster time scale than the intrachain relaxation, i
important to include the relaxation effects in the lifetime d

FIG. 5. A sketch of intrachain fluorescence resonant energy transfer pro
with double arrow denoting the intrachain dynamicsL, and with thick arrow
denoting the population depletion from the donor.
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tribution function. To take into account the polymer motio
during the reaction,P̂(z) can be evaluated with inhomoge
neous cumulant expansion for a fixed initial configurati
which has been used in studying spectral diffusion,45 giving

P~R0 ,t !5K expS 2E
0

t

K~t!dt D L
R0

. ~34!

Here^¯&R0
stands for the homogeneous average for a fix

initial configuration and can be calculated with cumulant e
pansion, for example, to first order, as

P~R0 ,t !'expF2E
0

t

^K~t!&R0
dtG . ~35!

For the semiflexible chain model introduced in Sec.
the inhomogeneous average is performed over the Gre
function in Eq.~B7!, giving

^K~t!&R0
5E K~R̃1R0f~ t !!

@2p^Rnm
2 &~12f~ t !2!/3#3/2

3expF2
3R̃2

2^Rnm
2 &~12f~ t !2!

Gd3R̃

'K~R0!12Dt(
m

]m]mK~R0!, ~36!

where we have applied the short time expansion ofK(R̃
1R0f(t))'K(R0)1(m,n ]m]nK(R0)R̃mR̃n/2 with m, n
standing for x, y, z, ^Rnm

2 &(12f(t)2)'12Dt, and D
5kBT/z. Therefore Eq.~35! can be approximated as

P~R0 ,t !'expF2K~R0!t2D(
m

]m]mK~R0!t2G
'expF2K~R0!t2

D(m]m]mK~R0!

K~R0!2 G , ~37!

where in the second approximationt is replaced by the reac
tion time 1/K(R0) for a specific configuration in the fas
reaction limit. Thus the lifetime

t'
1

K~R0!
expF2

D(m]m]mK~R0!

K~R0!2 G ~38!

becomes a weighted inhomogeneous reaction time and
lifetime distribution becomes a weighted average over in
mogeneous configurations,

f ~ t !5E K~R0!expF2
D(m]m]mK~R0!

K~R0!2 GPeq~R0!d3R0 .

~39!

For the FRET rate described in Eq.~25!, the weighting factor
can be evaluated explicitly as

expF2
D(m]m]mK~R0!

K~R0!2 G
5expH 2

6DtD

R0
2

5~R0 /RF!26

@11~R0 /RF!26#2J , ~40!
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wheretD is the fluorescence lifetime of the donor dye wit
out acceptor. When the diffusion coefficient increases, sm
R0 or large FRET rate will be favored, thus the lifetim
distribution will be shifted toward smallt, hence the en-
semble averaged lifetime decreases. Variational treatmen
Portman and Wolynes has rigorously proved that the st
and the dynamic averages are the upper and the lo
bounds on the ensemble averaged survival probability
general diffusion-controlled reactions.44 In the limit when
D→0, the small FRET rate contribution will be maximize
and the lifetime reduces to the reaction time for a static c
figuration,t5K21. Given the functional form of the energ
transfer rate, each measurement of lifetime corresponds
fixed donor–acceptor distance. Therefore, by measuring
FRET lifetime distribution, one can map out the distributi
function of interfluorophore distance. This mapping howe
is modified according to Eq.~40! by taking into account the
diffusional effect.

VI. INTRINSIC VISCOSITY

From standard viscoelasticity theory, the stress tenso
measured under the external shear flowvx5a(t)y and is
related to the desired time-dependent viscoelasticityh(t)
throughsxy(t)5hs1*`

t hp(t2t8)a(t8), wherehp(t) is the
viscosity contribution from polymers. Givenh(t), the intrin-
sic viscosity is@h#5*0

` hp(t)dt/(rhs), wherer is the mass
density of the polymer andhs is the solvent viscosity. Simi-
larly, we can determine the storage modulusG8(v) and the
loss modulusG9(v) from the viscoelastic responsehp(t).

We derive the microscopic expression for the polym
viscosityhp(t). We begin with the definition of the intrinsic
stress tensor

^sp,xy~ t !&52
c

N (
n
E Fnxr nyPdNr , ~41!

whereP is the distribution function of the Gaussian chain
time t andc is the number concentration of the beads. In E
~41!, the solvent contribution is not included in the stress a
sp,xy(t) is the contribution from single polymers. Under th
shear flow, the distribution function of the polymer cha
follows Ṗ(t)5LP(t)2(m ]mx@a(t)r myP(t)# where the op-
eratorL dictates the free propagation of the polymer and
second term is due to the external flow. To first order
perturbation, we have

P~ t !5P02E
2`

t

eL~ t2t!(
m

]

]r mx
a~t!r myP0~t!dt, ~42!

where P05Peq is the equilibrium distribution. Substituting
Eq. ~42! into Eq. ~41!, we find

hp~ t !5
c

N
bK (

n
Fnx~ t !r ny~ t !(

n
r mx~0!Fmy~0!L ,

~43!

which is the linear response expression found
literature.36,38,46,47Applying the Gaussian factorization to th
above-given expression leads to
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hp~ t !'
c

N
b(

nm
^Fnx~ t !r mx~0!&^Fmy~0!r ny~ t !&

5(
nm

c

N
kBTK ]r mx~ t !

]r nx~0!L K ]r ny~ t !

]r my~0!L , ~44!

where we assume the motions along different Cartesian
ordinates are decoupled. The Gaussian factorization and
decoupling assumption hold exactly for the Brownian moti
of Gaussian chains.

The key result of this section is the last expression in E
~44!, which relates single chain measurements to mac
scopic viscoelastic responses. Here, the stability func
]rmx /]rnx measures the divergence of the trajectories w
respect to initial conditions and cannot be obtained direc
from bulk measurements. By virtue of this expression,
can evaluate the intrinsic viscoelasticity of a Gaussian ch
by tracking bead motions along a polymer chain.

Accurate evaluation of the exact expression in Eq.~43!
has been carried out by Pyun and Fixman, Bixon and Zw
zig, etc.35–37We will calculate the viscosity within the sem
flexible Gaussian model. The viscoelasticity function in E
~44! can be transformed into normal modes as

]rmx~ t !

]rnx
5 (

p

N21
]rmx~ t !

]xpx~ t !
expF2

lp

zp
t G ]xpx

]rnx
, ~45!

where]rmx /]xpx is the unitary transform matrix element be
tween the real coordinates and normal modes. For the s
flexible Gaussian chain,hp(t) can be written as a sum ove
the exponentially decaying correlation functions of the n
mal modes

hp~ t !5kBT
c

N (
p51

N21

expF2
t

tp
G , ~46!

where tp5jp /(2lp) is the decay time for each norma
mode. In general, application of a shear flow does not inv
stretching modes, thus, only the bending motion of the po
mer chain is considered in the expression forhp(t). There-
fore the intrinsic storage modulus and the intrinsic lo
modulus are@G8(v)#p5*0

` v sinvt (p51
N21 exp@2t/tp#dt and

@G9(v)#p5(0
` v cosvt (p51

N21 exp@2t/tp#. Given the expres-
sion for lp in Eq. ~A2! andzp52Nz, we have

tp55
N2a0

2zLp

3p2kbT
p225t1p22, Lp!N

N4a0
2z

3p4kBTLp
p245t18p24, Lp>N,

~47!

which describes both the flexible chain whenLp!N and the
stiff rod whenLp>N. In the limit Lp51/2, the above-given
expression recovers the time constants forpth normal mode
of the Rouse chain.29 The expressions for@G8(v)#p and
@G9(v)#p simplify in the following two cases:

~1! In the low frequency limit, vt1!1 and vt18
!1@G8(v)#p and @G9(v)#p are approximated as

@G8~v!#p'H ~vt1!2(p51
` p245p4~vt1!2/90, Lp!N

~vt18!2(p51
` p285p8~vt18!2/9450, Lp>N,

~48!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and

@G9~v!#p'H vt1(p51
` p225p2vt1/6, Lp!N

vt18(p51
` p245p4vt18/90, Lp>N.

~49!

Therefore,@G8(v)#p and @G9(v)#p are proportional tov2

and v, respectively, and reduce to the stiff rod limit whe
Lp>N.

~2! In the high frequency limit,vt1@1 andvt18@1, the
sum overp is approximated by an integral, so that

@G8~v!#p'H ~vt1!1/2p/@4 sin~p/4!#, Lp!N

~vt18!1/4p/@8 sin~p/8!#, Lp>N
~50!

and

@G9~v!#p'H ~vt1!1/2p/@4 cos~p/4!#, Lp!N

~vt18!1/4p/@8 cos~p/8!#, Lp>N.
~51!

For the stiff chain, the bending motion has av1/4 dependence
at high frequency, which implieshp(t)}t21/4 when t!t18 .
This is consistent with the findings of the polymer bendi
motion in Refs. 48 and 49.

As shown in Figs. 6 and 7, numerical calculations of t
intrinsic storageG8(v) and loss moduliG9(v) from the
viscoelastic response functionhp(t) in Eq. ~46! confirm the
two different scaling regions for both flexible and semifle
ible chains. In the numerical calculation, the number
beads on the polymer chain is taken as 5000, the persist
lengthLp is 5 for the flexible chain and 500 for a semifle
ible chain.

In u solvent, the intrinsic moduli for the semiflexibl
chain can be calculated withtp obtained by the preaveragin
method in standard textbook,29 as shown in Appendix D.

~1! In the low frequency limit, similar to the above
mentioned derivation,@G8(v)#p and@G9(v)#p are still pro-
portional tov2 andv, respectively.

~2! In the high frequency limit,

FIG. 6. The intrinsic and loss storage modulus for a flexible chain with 5
beads and the persistence length taken as 5. At low frequencies,G8(v)
scales asv2 andG9(v) scales asv. At high frequencies, bothG8(v) and
G9(v) scale asv1/2.
Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP
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@G8~v!#p'H ~vt1!2/3p/@3 sin~p/3!#, Lp!N

~vt18!2/7p/@7 sin~p/7!#, Lp>N
~52!

and

@G9~v!#p'H ~vt1!2/3p/@3 cos~p/3!#, Lp!N

~vt18!2/7p/@7 cos~p/7!#, Lp>N,
~53!

which are proportional tov2/3 andv2/7, respectively.

VII. CONCLUDING REMARKS

In Secs. II and III, we formulated the semiflexib
Gaussian chain with analog to the Ornstein–Uhlenbeck r
dom walk process and incorporated the persistent length
the Rouse model. The mean square bead–bead dist
^Rnm

2 & is studied for different degrees of stiffness. For a fle
ible chain, the mean square distance exhibits the scaling
lation for a random Gaussian coil^Rnm

2 &52Lpun2mua0
2;

while for large persistence length, it scales as a rigid r
^Rnm

2 &5un2mu2a0
2. To study the intrachain motion of sem

flexible chains, the evolution ofRnm is calculated based on
the normal mode decomposition of the Langevin equation
a semiflexible polymer chain. The resulting Green’s functi
resembles a Gaussian process within a potential of m
force. The Brownian dynamics of the semiflexible cha
shows that the correlation function̂Rnm(t)"Rnm(0)& has a
much longer time scale for a stiff chain than for a flexib
polymer.

In Sec. IV, we have considered the fluorescence reso
energy transfer~FRET! process on a semiflexible chain
where a donor–acceptor pair attached to thenth and themth
polymer beads are used to probe the conformational dyn
ics. The fluorescence lifetime correlation function and t
FRET efficiency correlation function are closely related
the normalized distance correlation functionf(t). Thus both
the lifetime correlation and the FRET efficiency correlati
can be employed as possible measures of the intrachain
namics. Furthermore, the instantaneous diffusion coeffic
due to finite time resolutiontbin has been calculated within

0FIG. 7. The intrinsic and loss storage modulus for a semiflexible chain w
5000 beads and the persistence length taken as 500. At low frequen
G8(v) and G9(v) scales asv2 and v, respectively. At high frequencies
both G8(v) andG9(v) scales asv1/4.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the theoretical model. Astbin→0, the instantaneous diffusio
coefficient is obtained from the independent diffusive mot
of the donor and acceptor sites. When measured with fi
time resolution, the instantaneous diffusion coefficie
D̄(Rnm

2 )5^Rnm
2 &@12f2(tbin)#/tbin1Rnm

2 @12f(tbin)#2/tbin is
much smaller in the collapsed structure than in the orde
structure, and the variation has a quadratic dependenc
the donor–acceptor distanceRnm . Some of these prediction
are in qualitative agreement with reported experiments.11

In FRET experiments, the intrachain dynamics usua
occurs on a much longer time scale than the energy tr
fer reaction. In Sec. V, the FRET lifetime is discussed
the fast reaction limit. With inhomogeneous cumulant exp
sion, we have shown that the lifetime is a weighted re
tion time for a given initial configuration,t5K(R0)21

3exp@2D(m ]m]mK(R0)/K(R0)2#. When the intrachain re
laxation process is extremely slow,D→0, this expression
recovers the static limit, i.e.,t5K21, and thus, the distribu
tion function of the donor–acceptor distance can be map
out from the single-molecule lifetime measurements. F
thermore, recent measurements of the viscosity-depen
intramolecular quenching rate provide detailed informat
from the reaction-controlled limit to the diffusion-controlle
limit.33,34,50Thus systematic studies and detailed analysis
the ensemble averaged lifetime is necessary to better un
stand the polymer dynamics.51

The macroscopic viscoelastic response of a polym
chain is related to the bead dynamics on a single polyme
Eq. ~44!, from which the intrinsic elastic moduli are derive
Explicit evaluations of the elastic storage modulus and
elastic loss modulus are performed with the consideration
the persistence lengthLp . Our expressions exactly recove
the results for the Rouse chain in the limitLp→1/2, and
predict the correct scaling over frequency for the bend
motion of a stiff polymer in the stiff rod limitLp>N.

Single-molecule FRET measurements of the semiflex
chain yield rich information about intrachain motion, for e
ample, mean square distance, distance correlation func
instantaneous diffusion coefficient, and intrinsic viscos
Further refinements of single-molecule spectroscopy
provide more accurate methods to examine the details of
intra-polymer interactions and lead to better understandin
the related issues such as protein folding and self-assem
of biological systems. Further consideration of hydrod
namic and excluded volume effects can be implemente
the theoretical model for a semiflexible chain.
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APPENDIX A: APPROXIMATE NORMAL MODES
OF SEMIFLEXIBLE CHAINS

In a semiflexible chain, the potential energy is
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U5
3kBT

8a0
2 (

n51

N22 F11b

12b
~un112un!21

12b

11b
~un111un!2G

1
3kBT

4a0
2 ~u1

21uN21
2 !, ~A1!

whereun5Rn112Rn is the bond between thenth and the
n11th beads. In the continuous limit, the potential ener
reduces to Eq.~5! in Sec. II. Applying the transform of Eq
~7!, we can decompose the potential energy into three p
U5T11T21T3 , where

T15
3kBT

8a0
2

11b

12b (
n51

N22

~un112un!2

5
12NkBT

a0
2 (

p51

N21

xp
2 11b

12b
sin4

pp

2N
2

11b

12b
•T3 ,

T25
3kBT

8a0
2

12b

11b (
n51

N22

~un111un!2

5
12NkBT

a0
2 (

p51

N21

xp
2 12b

11b
sin2

pp

2N
cos2

pp

2N
2

12b

11b
•T3 ,

T35
3kBT

4a0
2 ~u1

21uN21
2 !

5
24kBT

a0
2 (

p,q51

N21

xp•xq sin2
pp

2N
sin2

qp

2N

3@~21!p1q11#cos
pp

2N
cos

qp

2N
.

Therefore, in the largeN limit, the off-diagonal terms areN
times smaller than the diagonal terms, and we approxima
diagonalize the potential energy in normal modes,U
'(p51

N21 lpxp
2/2 with

lp5
24NkBT

a0
2 sin2

pp

2N S 2Lp sin2
pp

2N
1

1

2Lp
cos2

pp

2ND ,

~A2!

where 2Lp5(11b)/(12b) is the persistent length. In th
limit of the flexible chain, the persistent length is relative
small compared to the contour length of the chain, the s
ond term dominates and yields

lp'
24NkBT

a0
2 sin2

pp

2N

1

2Lp
cos2

pp

2N
'

3p2kBT

Na0
2Lp

p2.

~A3!

In the limit of Lp→1/2 or b→0, lp given in Eq. ~A2! is
exactly the same as the result for Rouse chain.29 In the strong
persistence limit, the first term also contributes and may e
dominate for largep, yielding the worm-like chain norma
modes,

lp'
3p2kBTp2

Na0
2Lp

S 11
p2Lp

2

N2 p2D'
3kBTp4Lp

N3a0
2 p4. ~A4!
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In this expression, all the normal modes will be suppres
for a rigid-rod-like chain forLp→` while keeping only the
center of mass motion, which is a deficit of the approxim
normal modes we obtained in this section. Full motion of
chain can be observed from numerical solutions of the or
nal equation of motion in Eq.~6!.

APPENDIX B: GREEN’S FUNCTION
FOR THE SEMIFLEXIBLE GAUSSIAN CHAIN

As demonstrated in Appendix A, the potential energy
a semiflexible Gaussian chain is approximately diagonal
quadratic in normal coordinatesxp as shown in Appendix A.
The evolution of the normal modes follows the Smo
chowski equation,

]P

]t
5LP~ t !,

with

L5 (
p51

N21
1

zp

]

]xp
S kBT

]

]xp
1lpxpD . ~B1!

Solution of the above-given Fokker–Planck equation gi
the Green’s function

G~xp ,tuxp~0!!

5 )
p51

N21 F2pkBT

lp
S 12expS 22

lp

zp
t D D G23/2

3expH 2

(p51
N21 lpFxp2xp~0!expS 2

lp

zp
t D G2

2kBTS 12expS 22
lp

zp
t D D J ,

~B2!

and the equilibrium distribution of normal modes

Peq~xp!5 )
p51

N21 S 2pkBT

lp
D 23/2

expH 2
(p51

N21 lpxp
2

2kBT J . ~B3!

The correlation function of thepth normal mode is calcu
lated directly from above aŝ xp(t)•xp(0)&53kBT/lp

3exp@2lpt/zp#, and the equilibrium average ofRnm and the
correlation betweenRnm(0) and Rnm(t) can be evaluated
according to the decomposition in Eq.~12!,

^Rnm
2 &5 (

p51

N21

~cnm
p !2

3kBT

lp
, ~B4!

f~ t !5
^Rnm~ t !"Rnm~0!&

^Rnm
2 &

5@^Rnm
2 &#21 (

p51

N21

~cnm
p !2

3kBT

lp
expF2

lp

zp
t G . ~B5!

Rnm is a Gaussian variable because it is a linear com
nation of Gaussian normal modes. The equilibrium distrib
tion of Rnm is
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Peq~Rnm!5E dxpdS Rnm2 (
p51

N21

cnm
p xpD Peq~xp!

5F2p

3
^Rnm

2 &G23/2

expH 2
3Rnm

2

2^Rnm
2 &J , ~B6!

where cumulant expansion over the Gaussian normal mo
and Eq.~B4! are applied. In a similar fashion it can be show
that the joint distribution forRnm(t) andRnm(0) is

P~Rnm~ t !,t,Rnm~0!!

5F4p2

9
^Rnm

2 &2~12f~ t !2!G23/2

3expH 2
3@Rnm

2 ~ t !22f~ t !Rnm~ t !"Rnm~0!1Rnm
2 ~0!#

2^Rnm
2 &~12f~ t !2! J ,

~B7!

and the evolution ofRnm is described by the correspondin
Green’s function,

G~Rnm~ t !,tuRnm~0!!

5
P~Rnm~ t !,t,Rnm~0!!

Peq~Rnm~0!!

5F2p

3
^Rnm

2 &~12f~ t !2!G23/2

3expH 2
3~Rnm~ t !2f~ t !Rnm~0!!2

2^Rnm
2 &~12f~ t !2! J . ~B8!

APPENDIX C: FRET RATE DISTRIBUTION AND
CORRELATION OF SEMIFLEXIBLE GAUSSIAN CHAIN

The FRET rate depends on the distanceR between the
donor and the acceptor asK(R)5kF(RF /R)6, whereRF is
the Förster radius at which the transfer efficiency is 50%, a
kF is the energy transfer rate atR5RF . However, this rate
expression diverges atR→0 where the transition dipole–
dipole interaction no longer holds. To facilitate the calcu
tion, we choose a slightly modified expression ofK(R) as

K~R!5
kF

e1~R/RF!6 , ~C1!

wheree is a small quantity that denotes the breakdown of
weak dipole–dipole interaction whenR is extremely small. It
is shown later in this section that the average transfer
^K(R)& is a large quantity becausee is usually small. The
overall decay rate of the fluorescence on the donor mole
can be approximated by neglecting the radiative decay.
three-dimensional Fourier transform of the rate functi
K(R) is

K~q!5
2p2kFRF

2

3qe2/3 H exp@2qRFe1/6#1expF2
qRFe1/6

2 G
•F2cosS)2 qRFe1/6D1) sinS)2 qRFe1/6D G J .

~C2!
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Consideringe is a small number andqRFe1/6!1, the leading
order ofK(q) is

K~q!'
2p2RF

3kF

3Ae
, ~C3!

which approximates energy transfer by a delta-function s
BecauseRnm is a Gaussian variable with distribution E
~B6!, the cumulant expansion yieldŝ exp@iq"Rnm#&
5exp@2q2^Rnm

2 &/6#, and the average overK(Rnm) and the
correlation ofK(Rnm) are evaluated as

^K~Rnm!&5E
q
K~q!exp@2q2^Rnm

2 &/6#

5kFA3p

2e S ^Rnm
2 &

RF
2 D 23/2

, ~C4!

^K~Rnm~ t !!G~ t !K~Rnm~0!!&

5E
q
E

q8
K~q!K~q8!expH 2

^Rnm
2 &
6

@q21q82

12q"q8f~ t !#J 'kF
2 3p

2e S ^Rnm
2 &

RF
2 D 23

@12f2~ t !#23/2,

~C5!

where *q stands for * d3q/(2p)3 and f(t)5^Rnm(t)
•Rnm(0)&/^Rnm

2 &. Therefore the memory functionx(t) is di-
rectly related to the distance correlation functionf(t) as

x~ t !5
^K~Rnm~ t !!G~ t !K~Rnm~0!!&

^K~Rnm!&2 21

5@12f2~ t !#23/2215(
l 51

`

~2l 11!!!/ ~2l l ! !f2l~ t !,

~C6!

where (2l 11)!! 5(2l 11)•(2l 21)¯3•1. If we are able to
calculate the correlation functionf(t), the corresponding
correlation function for FRET rates is determined acco
ingly.

APPENDIX D: HYDRODYNAMIC INTERACTIONS
IN SEMIFLEXIBLE GAUSSIAN CHAINS

In u solvent, the hydrodynamic interactions among po
mer beads must be considered. With the preaveraging t
nique introduced in the Zimm model,29 we are able to evalu
ate the normal modes of semiflexible chain approximate

In the long chain limit whenLp!N, the persistent
length introduces slight deviations from the Zimm model
u solvent, and we have

zp5~2Lp!1/2zp
ZM , ~D1!

lp5
1

2Lp
lp

ZM , ~D2!

tp5
zp

lp
5~2Lp!3/2tp

ZM , ~D3!
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where the superscript ‘‘ZM’’ means the corresponding qua
tities in the Zimm model,

zP
ZM5hs~12p3Na0

2p!1/2, ~D4!

lp
ZM5

6p2kBT

Na0
2 p2, ~D5!

tp
ZM5t1

ZMp23/2. ~D6!

It is obvious that all the above-given relations reduce to
Rouse model whenLp51/2.

In the short chain limit whenLp@N, the corresponding
quantities are

zp'~12p3!1/2hsa0p1/2N1/2, ~D7!

lp'
3p4kBTLp

N3a0
2 p4, ~D8!

tp5t1p27/2. ~D9!
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