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Simple closed-form expressions of line-shape functions are derived for models of a two-level chromophore
linearly coupled to harmonic oscillator baths on the basis of an accurate approximation for the coth(x/2)
function. The expressions are valid for arbitrary temperature and can be extended to a general spectral density
given by a sum of algebraic terms with exponential damping factors. Detailed analyses for three typical
spectral densities reveal, in the strong-coupling limit, general temperature dependences of the line widths,
and in the weak coupling limit, important features of temperature dependence.

The spectral line shape of a collection of molecules reflects
the dynamical and statistical nature of the transitions being
probed and thus is an important frequency domain probe of the
microscopic details of the molecules and their interactions with
the environment. For simple molecules in the gas phase1 or
perfect crystalline media,2-4 well-established theoretical results
exist, providing satisfactory explanations for important charac-
teristics of line shapes. For large macromolecules or in more
complex condensed media,4-7 the microscopic implications of
the spectral line shapes remain unknown in many cases.

One of the main issues of molecular spectroscopy in general
condensed media4-7 is how to characterize and quantify different
line-broadening mechanisms that are not known a priori.
Nonlinear spectroscopies6-16 such as hole burning8-10 and
photon echo11-16 are major experimental approaches that can
address this issue to provide important information on the
dynamics of chromophores in molecular solids11,12 and
liquids.6,13-16 However, in general, only partially complete
information can be obtained from these experiments, and the
assumptions involved in the interpretations are not always simple
to confirm. Recent advances in single-molecule spectroscopy17

complement these subensemble methods and in principle allow
direct experimental study of individual relaxation dynamics.
However, limitations in the time resolution and selectivity of
the present level of experiments pose difficulties in the full
realization of its potential. Temperature-dependence studies18-23

and comparisons with ensemble experiments18,22,24 have im-
portant implications in this regard. The former can assess the
contributions of different line-broadening mechanisms indirectly,
and the latter can confirm whether the small samples of single-
molecule spectroscopy are representative of the ensemble.

In light of recent progress in single-molecule spectroscopy,
detailed accounts of the line shape of a molecule in a condensed
medium and its temperature dependence have direct experi-
mental relevance and are thus a meaningful issues. The present
article provides expressions that are useful in such analyses of
the models of a two-level chromophore coupled to harmonic
oscillator baths. Numerous studies have been conducted on these
prototypical models,3,6,25-35 but the issues being addressed here

are relatively new. For many spectral densities of the bath, the
form of the line shape in the very low or the very high
temperature limit is fairly well-known, but the crossover between
the two asymptotic regions is less well characterized. Without
definite information on the values of parameters that determine
the spectral density, it is not always clear whether the
experimental condition belongs to either of the asymptotic
regions. Therefore, knowing the general line shape over the
entire range of temperature has practical importance regarding
the proper analysis of the line shape without unfounded
assumptions. Even for the simplest models with linear chro-
mophore-bath coupling, our knowledge of the general tem-
perature dependence is incomplete. On the basis of a simple
and accurate approximation, we derive general expressions that
enable us to obtain a more concrete understanding of how the
spectral line shape varies with temperature for a class of spectral
densities with exponential damping factors.

Consider a chromophore embedded in a bath of harmonic
oscillators. The total Hamiltonian in the absence of radiation is
assumed to be

where|g〉 and |e〉 are respectively the ground and the excited
states of the chromophore, andEg andEe are their energies.Hb

is the Hamiltonian of the bath for the ground-state chromophore,
andδHb is the change of the bath Hamiltonian upon excitation
of the chromophore. It is assumed thatHb ) ∑npωn(bn

/bn +
1/2), and δHb ) ∑npcn(bn + bn

/)/x2ωn, where ωn is the
frequency of thenth bath mode andbn

/(bn) is the creation
(annihilation) operator of the corresponding phonon. The spectral
density of the bath is defined as

In the presence of radiation,|g〉 and |e〉 are coupled via a
transition dipole, and the absorption line shape is given by
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H ) Eg|g〉 〈g| + (Ee + δHb)|e〉 〈e| + Hb (1)

J(ω) ≡ ∑
n

cn
2

2ωn

δ(ωn - ω) (2)

I(Ω) ) 1
2π∫-∞

∞
dt exp{iΩt - gr(t) - igi(t)} (3)
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whereΩ is the photon frequency relative to (Ee - Eg)/p and

We consider the following class of spectral densities

whereRn is a dimensionless constant determining the strength
of the coupling, andωc is the cutoff frequency dictating the
spectral width of the bath. Results for three cases (n ) 1, 2, 3)
in eq 6 are presented in detail; these can be related to different
spatial dimensions in the deformation potential model.9 The
corresponding expressions forgr(t) and gi(t) are denoted as
gr

(n)(t) and gi
(n)(t). For the spectral density given by eq 6,

explicit expression for eq 5 can easily be obtained, but this is
not the case for eq 4 because of the presence of coth(âpω/2).
Series expansions of this function can be used, but instead of
using the full series, we suggest the following interpolation

wherex ) âpω. This approximation is obtained by the following
two steps: (i) expansion of coth(x/2) with respect to e-x up to
the second order and (ii) supplementing this expansion with an
additional term that decays faster than e-2x while reproducing
the smallx expansion of coth(x/2) up to the order ofx0. Figure
1 compares eq 7 with the exact value. The agreement is
remarkably good. Also shown are the small e-x and smallx
expansions up to the first three terms. The inset in Figure 1
shows that the approximation, eq 7, is always better than these
two expansions in the crossover region. This is interesting
considering that the smallx expansion of eq 7,2/x + x/4, is in
error36 with the correct expansion,2/x + x/6, by x/12.

Using eq 7, one can perform the explicit integration of eq 4
for the class of spectral densities given by eq 6. Before
presenting the results, we first define

Then, forn ) 1,

For n ) 2,

Finally, for n ) 3,

Although not shown here, explicit expressions can also be
obtained forn > 3. The above expressions are valid for arbitrary
values of temperature andωc. Because these expressions do not
involve an infinite series, possible singularities are naturally
avoided. Because the explicit functional forms in the time
domain are available, a clear analysis of the integration in eq 3
can be made for various limits. Furthermore, these expressions
are advantageous for more general situations where the spectral
densities are given by a sum of functions of the type of eq 6. In
the present work, we consider only the three model spectral
densities listed above and analyze the features of the line shape
in the limits of strong and weak coupling.

A. Strong-Coupling Limit ( rn . 1)

The strong-coupling limit is defined as the limit of large
enoughRn such that quadratic expansions ofgr

(n)(t) andgi
(n)(t)

in eq 3 result in a sufficiently good overall approximation of
the line shape. The necessary condition for this approximation
is Rn . 1, but sufficient conditions differ depending onn and
temperature. Given that these conditions are fulfilled, expansions
of eqs 10-15 up to the second order oft lead to the following
Gaussian forms of the line shape functions:

Figure 1. Comparison of the approximation, eq 7, with the exact value
of coth(x/2). The short-dashed line corresponds to2/x + x/6, and the long-
dashed line corresponds to 1+ 2e-x + 2e-2x. The inset shows the
crossover region between these two expansions.

θ ≡ âpωc (8)

τs ≡ ωct

1 + sθ
(9)

gr
(1)(t) ≈ R1

2 {ln(1 + τ0
2) + 2 ln(1 + τ1

2) + 2 ln(1 + τ2
2) +

4
(1 + 5θ/2)

θ ∫0

τ5/2 dτ′ tan-1(τ′)} (10)

gi
(1)(t) ) R1(tan-1(τ0) - τ0) (11)

gr
(2)(t) ≈ R2

2 { τ0
2

1 + τ0
2

+ 2
(1 + θ)

τ1
2

(1 + τ1
2)

+

2
(1 + 2θ)

τ2
2

(1 + τ2
2)

+ 1
θ

ln(1 + τ5/2
2 )} (12)

gi
(2)(t) )

R2

2 ( τ0

1 + τ0
2

- τ0) (13)

gr
(3)(t) ≈ R3

3 {τ0
4 + 3τ0

2

(1 + τ0
2)2

+ 2

(1 + θ)2

τ1
4 + 3τ1

2

(1 + τ1
2)2

+

2

(1 + 2θ)2

τ2
4 + 3τ2

2

(1 + τ2
2)2

+ 2
θ(1 + 5θ/2)

τ5/2
2

(1 + τ5/2
2 )} (14)

gi
(3)(t) )

R3

3 ( 2τ0

(1 + τ0
2)2

- τ0) (15)

In(Ω) ≈ 1

x2πRnωc
2Dn(θ)2

exp(- Ω2

2Rnωc
2Dn(θ)2) (16)

gr(t) ≡ ∫0

∞
dω

J(ω)

ω2
coth(âpω

2 )(1 - cos(ωt)) (4)

gi(t) ≡ ∫0

∞
dω

J(ω)

ω2
(sin(ωt) - ωt) (5)

Jn(ω) )
Rn

n!
ωn

ωc
n-1

e-ω/ωc (6)

coth(x2) ≈ 1 + 2e-x + 2e-2x + 2
x
e-5x/2 (7)
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where

Figure 2 shows the scaled line widthDn(θ) for eachn as a
function of the scaled temperature 1/θ ) kBT/pωc. In all cases,
the widths show monotonic crossover from the finite zero-
temperature limit to high-temperature asymptotic behavior,

x2kBT/(np). Temperature dependences in crossover regions
seem almost linear. The approach to the high-temperature limit
is faster for smallern.

The expressions presented above are valid only in the
sufficiently strong coupling limit such that the line shape has a
Gaussian form over the entire range of temperature. Equations
16 and 17 indicate how the line width in that limit varies with
temperature for the class of spectral densities given by eq 2.
These results can be generalized to the cases where the spectral
density is given by a sum of algebraic functions with exponential
damping factors. Given that the assumption of strong coupling
can be confirmed either directly or indirectly, our expressions
can help to obtain microscopic parameters from the temperature
variation of experimental line width and also can be used to
understand ensemble line shape for general cases where there
exist inhomogeneity inRn and ωc as well as in the transition
frequency.

B. Weak-Coupling Limit ( rn , 1)

The weak-coupling limit is defined as the limit whereRn is
small enough such that all the exponentials in eq 3 with bounded
exponents can be expanded up to the first order ofRn. The
necessary condition for this limit isRn , 1, but again, sufficient
conditions depend onn and temperature.

For n ) 1, all of the exponents are unbounded except for
tan-1(τ0) in gi

(1)(t) given by eq 11. The weak-coupling limit
brings no substantial simplification for this case. In the zero-
temperature limit,θ ) ∞, the line-shape function can be
approximated as

where- iR1 tan-1(τ0) causes the above line-shape function to
be asymmetric with respect to (Ω + R1ωc) by contributing an
antisymmetric function. For a qualitative understanding of the
line shape near the peak maximum, disregarding the asymmetry,
this antisymmetric contribution can be neglected. Thus, for|Ω
+ R1ωc| , ωc,

This type of power-law divergence is well-known31,33 and has
been considered to be the signature of the Ohmic behavior of
the spectral density.9 How this singular behavior changes at
finite temperature is important in various contexts and has been
addressed before.33 Equation 10 gives a more quantitative
analysis of the transition. At finite temperature, because of the
second and third terms in eq 10, the effective value of the power

becomes less negative. In addition, at finite temperature, the
last term in eq 10 is unbounded and becomes proportional to
|t|, thus dominating other logarithmic terms. The line shape near
the peak maximum is determined by the long-time asymptotic
behavior of this integrand. That is, for|Ω + R1ωc| , ωc/(1 +
5θ/2),

Thus, the zero-temperature divergence is replaced by a finite
Lorentzian peak with a width proportional to temperature. This
result is consistent with the observation that the pure dephasing
rate is proportional to temperature25,32,33for an Ohmic bath at
finite temperature. The present analysis clarifies that this
behavior is limited to a frequency range smaller thanωc/(1 +
5θ/2), beyond which the power-law behavior persists.

For the case ofn ) 2, gr
(2)(t) consists of both bounded and

unbounded terms, except for the zero-temperature limit, where
all of the terms ofgr

(2)(t) are bounded and the line shape can be
approximated as

whereH is the Heavyside function. Thus, forn ) 2, a well-
resolved zero phonon line (ZPL) and a phonon sideband (PSB)
exist in the zero-temperature limit. This feature changes at finite
temperature. Using the full expression (eq 12) and expanding
the exponentials with bounded exponents up to the first order
of R2, one can show that the weak-coupling limit of finite-
temperature line shape can be approximated as

Dn(θ)2 )

1 + 2

(1 + θ)n+1
+ 2

(1 + 2θ)n+1
+ 2

nθ(1 + 5θ/2)n
(17)

I1(Ω, T ) 0) ≈ 1
2π∫-∞

∞
dt ei(Ω+R1ωc)t (1 + τ0

2)-R1/2

× (1 - iR1tan-1(τ0)) (18)

I1(Ω, T ) 0) ≈ ∫-∞

∞
dt ei(Ω+R1ωc)t (1 + τ0

2)-R1/2

∝ |Ω + R1ωc|R1-1, R1 < 1 (19)

Figure 2. Dn(θ), eq 17, as a function of scaled temperature,1/θ )
kBT/pωc. The long-dashed lines with open symbols correspond to the
high-temperature asymptotics.

I1(Ω) ≈ ∫-∞

∞
dt ei(Ω+R1ωc)t- πR1|t|/(âp)

)
πR1kBT/p

(Ω + R1ωc)
2 + (πR1kBT/p)2

(20)

I2(Ω, T ) 0) ≈ 1
2π∫-∞

∞
dt ei(Ω+R2ωc/2)t

× {1 -
R2

2

τ0
2

1 + τ0
2

- i
R2

2

τ0

1 + τ0
2}

) (1 -
R2

2 ) δ(Ω +
R2ωc

2 )
+

R2

2ωc
H(Ω +

R2ωc

2 )e-|Ω/ωc+R2/2| (21)
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where the first term corresponds to the finite-temperature
correction of the ZPL and the second term corresponds to that
of the PSB. An important fact is that in the low-temperature
region the first term of eq 22 shows a power-law divergence,
as in the case of the zero-temperature limit ofn ) 1. That is,
for 0 < T < pωc/(kBR2),

Thus, the ZPL is smeared out and shows power-law behavior
with an exponent that is linearly dependent on temperature. This
type of power-law dependence has already been recognized by
Reichman et. al.,33 but only in the context of the high-
temperature limit.

For the case ofn ) 3, all terms ofgr
(3)(t) are bounded, and

the following approximation becomes valid:

where

Explicit contour integrations of eq 3 with the approximation of
eq 24 can be made. The resulting line shape is

where the first term corresponds to the ZPL and the remaining
terms form the PSB. The fact that the ZPL has a delta function
form implies that, for the present model, the width of the ZPL
does not depend on temperature, in contrast to its intensity,
which decreases with temperature. However, the PSB exhibits
an interesting temperature dependence. Figure 3 shows the PSB
at three different values of temperature. In the zero-temperature
limit, the PSB is confined only to the positive side of the ZPL.
Raising the temperature causes the PSB to be more symmetric,

but the positive-side width remains almost invariant. In the very
high temperature limit, the PSB becomes virtually symmetric
and peaked at the position of the ZPL.

It is well-known that the spectral features in the weak-
coupling limit depend critically on the dimensionality of the
spectral density. The analyses here substantiate this fact and
provide a more quantitative basis for the understanding of their
temperature dependences. Experimental confirmation of these
aspects may be possible, given that other line-broadening
mechanisms can be well identified.

In the present work, we disregarded line broadening due to
lifetime decay, nonlinear system-bath couplings, and anhar-
monic bath modes. Our analyses are meaningful, given that these
other mechanisms are negligible or can be incorporated inde-
pendently. Another important issue is the form of the spectral
density. Equation 6 represents those forms that are widely used
in theoretical treatments of dissipative quantum dynamics,34 but
the actual spectral density in real systems can be different in a
number of ways. The power-law behavior of the spectral density
in the smallω region is quite general and reflects the effective
dimensions of the bath, but the high-frequency tail can be more
complicated than the exponential form. If the maximum and
the range of the spectral density can be well fitted by eq 6,
with a suitable choice ofn, then it is expected that the deviation
from the present result is small and is limited to a narrow range
of temperature. Substantial differences can occur if the spectral
density consists of multiple bands with well-separated frequency
ranges. The best approach for these cases, within the present
model, is to include the high-frequency portions (much larger
than room temperature) as a renormalization of the system
Hamiltonian and to model the low-frequency portions (smaller
or comparable to room temperature) by a linear combinations
of functions of the type of eq 6. The general form ofgr(t) can
be obtained for this model spectral density also. Many examples
of complicated spectral densities including the cases with
additional vibronic couplings can be addressed in this way, but
the nature of the temperature dependence and the adequacy of
our approach depend on specfic details of the system, which
are beyond the scope of the present work.

Summarizing the main results of the present article, under
the assumption that the spectral density of the bath can be
modeled by eq 2, we have (i) derived closed-form expressions
for gr(t) (eqs 10, 12, and 14); (ii) derived line-width expressions
in the strong-coupling limit; and (iii) analyzed important
characteristics of temperature dependences in the weak-coupling

I2(Ω) ≈ {1 -
R2

2 (1 + 2
(1 + θ)

+ 2
(1 + 2θ))}

× 1
2π∫-∞

∞
dt ei(Ω+R2ωc/2)t(1 + τ5/2

2 )-R2/(2θ)

+
R2

4π∫-∞

∞
dt ei(Ω+R2ωc/2)t(1 + τ5/2

2 )-R2/(2θ)

× ( 1

1 + τ0
2

+ 2

(1 + θ)(1 + τ1
2)

+ 2

(1 + 2θ)(1 + τ2
2)

- i
τ0

(1 + τ0
2)) (22)

I2(Ω)ZPL ∝ |Ω + R2ωc/2|R2kBT/(pωc)-1 (23)

e-gr
(3)

(t)-igi
(3)

(t) ≈
eiR3τ0/3 (1 - gr

(3)(∞) + gr
(3)(∞) - gr

(3)(t) - i
R3τ0

3(1 + τ0
2)2) (24)

gr
(3)(∞) )

R3

3 {1 + 2

(1 + θ)2
+ 2

(1 + 2θ)2
+ 2

θ(1 + 5θ/2)} (25)

I3(Ω) ≈ (1 - gr
(3)(∞)) δ(Ω +

R3ωc

3 ) +

R3

3ωc
|Ω
ωc

+
R3

3 |{H(Ω
ωc

+
R3

3 )e-|Ω/ωc+R3/3| + e-(1+θ)|Ω/ωc+R3/3| +

e-(1+2θ)|Ω/ωc+R3/3|} +
R3

6θωc
e-(1+5θ/2)|Ω/ωc+R/3| (26)

Figure 3. Phonon sidebands for three temperatures for the line-shape
function I3(Ω) given by eq 26.
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limit. Results (i) and (ii) are valid over the entire range of
temperature. The crucial step in attaining these results has been
the use of the simple approximation for coth(x/2) given in eq 7.
In fact, this approximation is not limited to the line-shape theory
but can also be applied to other areas of dissipative quantum
dynamics6,34including surface scattering37 and excitation energy-
transfer reactions.38 It will be interesting to discover whether
these applications can also produce new and useful results.
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