Turkish Journal of Chemistry

Turkish Journal

of

Chemistry

Keywords Authors

chem@tubitak.gov.tr

Scientific Journals Home
Page

Reactions of the solvent-stabilized compound [MoOCl₂(THF)₂] with aromatic nitrogen donor ligands: spectroscopic characterization and semiempirical AM1* calculations

Gülşah KILIÇKAYA¹, Başak DOĞAN¹, Nursel ACAR², Işıl TOPALOĞLU SÖZÜER¹

¹Department of Chemistry, Faculty of Science, ›zmir Institute of Technology, Gülbahçe, 35430 Urla, İzmir-TURKEY

e-mail: isiltopaloglu@iyte.edu.tr

²Department of Chemistry, Faculty of Science, Ege University,

35100 Bornova, İzmir-TURKEY

<u>Abstract:</u> Reaction of the solvent-stabilized dioxo-molybdenum(VI) compound $[MoO_2Cl_2(THF)_2]$ with PPh₃ yielded the oxomolybdenum(IV) species $[MoOCl_2(THF)_2]$ (1) by the removal of one oxygen atom as PPh₃O. The complexes $[MoOCl_2(=NC_6H_4CN)]$ 2, $[MoOCl_2(CNC_6H_4OH)]$ 3, $[MoOCl_2(=NC_6H_4NH_2)]$ 4, and $[MoOCl_2(=NC_6H_4OCH_3)]$ 5, were synthesized by the reactions of $[MoOCl_2(THF)_2]$ with XC_6H_4Y (X = NH₂, Y = CN; X= CN, Y = OH; X = Y = NH₂; X = NH₂, Y = OCH₃). All the new compounds were characterized by elemental analyses, and FTIR, UV-Vis, and 1H - and 13 C-NMR spectra. Geometrical

Key Words: Mo(VI) complexes; oxo-imido complexes; oxomolybdenum complexes; oxygen atom.

parameters and molecular orbital calculations showed that compounds 2-5 are stabilized by a charge

Turk. J. Chem., 33, (2009), 693-708.

transfer between the Mo center and the phenyl ring.

Full text: pdf

Other articles published in the same issue: Turk. J. Chem., vol.33, iss.5.