

arXiv.org > astro-ph > arXiv:1010.5944

Search or Article-id

(Help | Advanced search) All papers - Go!

Download:

• PDF

• Other formats

Current browse context: astro-ph.SR < prev | next > new | recent | 1010

Change to browse by:

astro-ph

References & Citations

- SLAC-SPIRES HEP (refers to | cited by)
- NASA ADS

Bookmark(what is this?)

Astrophysics > Solar and Stellar Astrophysics

Statistical comparison of clouds and star clusters

O. Lomax, A. P. Whitworth, A. Cartwright

(Submitted on 28 Oct 2010)

The extent to which the projected distribution of stars in a cluster is due to a large-scale radial gradient, and the extent to which it is due to fractal sub-structure, can be quantified -- statistically -- using the measure $(cal Q) = bar{m}/bar{s}$. Here $bar{m}$ is the normalized mean edge length of its minimum spanning tree (i.e. the shortest network of edges connecting all stars in the cluster) and $bar{s}$ is the correlation length (i.e. the normalized mean separation between all pairs of stars).

We show how ${\Q} \ cal Q\$ can be indirectly applied to grey-scale images by decomposing the image into a distribution of points from which $\bar {m}\$ and $\bar {s}\$ can be calculated. This provides a powerful technique for comparing the distribution of dense gas in a molecular cloud with the distribution of the stars that condense out of it. We illustrate the application of this technique by comparing ${\Q} \$ values from simulated clouds and star clusters.

Comments:Accepted 2010 October 27. Received 2010 October 25; in original form
2010 September 13 The paper contains 7 figures and 2 tablesSubjects:Solar and Stellar Astrophysics (astro-ph.SR)Cite as:arXiv:1010.5944v1 [astro-ph.SR]

Submission history

From: Oliver Lomax [view email] [v1] Thu, 28 Oct 2010 12:40:00 GMT (852kb,D)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.