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The Interaction of High-Speed Turbulence with Flames: Turbulent Flame Speed
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Abstract

Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic,
Kolmogorov-type turbulence in an unconfined system are usedto study the mechanisms determining the turbulent
flame speed,ST , in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35
times the laminar flame speed,SL, resulting in the Damköhler numberDa = 0.05. The simulations were performed
with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive-flow code.
A simplified reaction-diffusion model, based on the one-step Arrhenius kinetics, represents a stoichiometric H2-air
mixture under the assumption of the Lewis numberLe = 1. Global properties and the internal structure of the
flame were analyzed in an earlier paper, which showed that this system represents turbulent combustion in the thin
reaction zone regime. This paper demonstrates that: (1) Theflame brush has a complex internal structure, in which
the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of
the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame
surface. (3) In the thin reaction zone regime,ST is predominantly determined by the increase of the flame surface
area,AT , caused by turbulence. (4) The observed increase ofST relative toSL exceeds the corresponding increase of
AT relative to the surface area of the planar laminar flame, on average, by≈14%, varying from only a few percent to as
high as≈30%. (5) This exaggerated response is the result of tight flame packing by turbulence, which causes frequent
flame collisions and formation of regions of high flame curvature& 1/δL, or “cusps,” whereδL is the thermal width
of the laminar flame. (6) The local flame speed in the cusps substantially exceeds its laminar value, which results in a
disproportionately large contribution of cusps toST compared with the flame surface area in them. (7) A criterion is
established for transition to the regime significantly influenced by cusp formation. In particular, at Karlovitz numbers
Ka & 20, flame collisions provide an important mechanism controlling ST , in addition to the increase ofAT by
large-scale motions and the potential enhancement of diffusive transport by small-scale turbulence.
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1. Introduction

One of the fundamental questions of turbulent combustion research concerns our ability to understand and predict
the rate of energy release, or equivalently the burning speed, of a turbulent flame. This can be achieved if two
key aspects of the combustion process can be determined: (1)its local properties, namely the local speed of flame
propagation, and (2) its global characteristics, i.e., theoverall structure of the turbulent flame that connects the local
burning velocity with the turbulent flame speed. In general,such local and global characteristics are not universal for
the combustion process. They can vary substantially both inspace and time due to the unsteadiness, inhomogeneity,
and anisotropy of the turbulent flow associated with the system geometry, presence of walls and boundaries, change
in the flow conditions, etc.

Our present understanding of turbulent combustion is largely based on the concept originally proposed almost
70 years ago by Damköhler [1] (also see reviews by [2, 3, 4, 5]). This concept is formulated for a turbulent flame
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that is, on average, a planar, quasi-one-dimensional structure propagating in a steady, homogeneous, and isotropic
background turbulent flow. According to Damköhler’s suggestion, two qualitatively distinct regimes of turbulence-
flame interaction can be identified, and they are typically referred to as “large-scale” and “small-scale” turbulence
[1, 5].

In the first regime, the overall structure of the turbulent flame is determined by turbulent motions on large scales
greater than the flame width,δL. These motions stretch and fold the flame, thereby increasing its surface area,AT . At
the same time, they do not affect the local burning velocity,Sn, with which the flame propagates normal to its surface
at each point and which remains equal to the speed,SL, of the unperturbed laminar flame. Consequently, the speed,
ST , of the turbulent flame grows proportionally to the increaseof the flame surface area, i.e.,ST = SL(AT/AL), where
AL is the surface area of the planar laminar flame. The limitations of this assumption were known practically at the
time when this model was proposed [6]. In particular, when the Lewis numberLe, 1, Sn can vary with the curvature
of the flame. As a result, the stretching and folding action ofscalesλ > δL ends up affectingSn. The relation between
AT andST , however, can be generalized by incorporating the effects of flame strain and curvature in terms of the
stretch factorI ([3], also see [7] for the review of the theory of flame stretch),

ST

SL
= I

AT

AL
. (1)

In the second regime, large-scale wrinkling of the flame by turbulence is absent. Instead, small-scale motions,
which are energetic enough, penetrate and disrupt the internal flame structure. Thus molecular diffusivity and thermal
conduction become enhanced, or completely dominated, by the turbulent transport associated with such small-scale
turbulence. As a result, in this regime, the turbulent flame speed is suggested to be [1]

ST

SL
∼

(

DT

D

) 1/2

, (2)

whereD andDT are, respectively, the molecular and the effective turbulent diffusivities.
These two regimes, in effect, represent two limits of low and high turbulent intensity. In the first case, large-scale

turbulence must be slow enough so that the Kolmogorov scaleη > δL, thus causing the flow to remain laminar on
scalesλ . δL. This combustion regime corresponds to the “wrinkled” and “corrugated flamelets.” In the opposite
limit, the small-scale turbulence regime is realized when turbulent motions on all scales in the system are sufficiently
fast to form an effectively one-dimensional (1D) structure analogous to the planar laminar flame, but which has a much
larger width and speed. This second regime is often associated with either a “thin reaction zone” flame [5] or a “broken
reaction zone” (“distributed”) flame [4, 8, 9, 10]. As a consequence of considering these two limits, description of the
turbulent flame becomes significantly simplified. The large-scale regime assumes very simple local flame properties,
i.e., those of the laminar flame, but a complex global structure of a highly convolved flame surface. The small-scale
regime, on the other hand, trades the simplicity of the global structure of a planar flame for the complexity of its
internal structure, which is pronouncedly distinct from that of the laminar flame. Therefore, each of these regimes
has only one dynamically important quantity that completely determinesST , namelyAT for the large-scale turbulence
andDT for the small-scale turbulence.

This picture then naturally raises the following question.How does the transition occur between these two limiting
regimes of combustion? At some intermediate turbulent intensities, the flow will cease to be laminar on scalesλ . δL.
As a result, turbulence will begin to penetrate the flame, disrupting it and causing its internal structure to differ from
that of the laminar flame. At the same time, the flame can remainsufficiently thin to form, under the action of high-
intensity large-scale motions, a highly convolved and tightly packed configuration. The picture outlined above would
then imply a gradual shift with increasing turbulent intensity from the large-scale turbulence being the dominant
process controllingST to the small-scale one. Over a substantial range of turbulent intensities, however, it must be
their combined action that determines the magnitude ofST .

Of particular interest, in this respect, is the “thin reaction zone” regime, in which only the preheat zone is disrupted
by turbulence. The presence of turbulent motions on scalesλ . δL suggests that the molecular and thermal transport
between the reaction and preheat zones are affected by turbulence. This should causeSn to differ fromSL, which
is characteristic of the small-scale turbulence regime. Onthe other hand, if the structure of the reaction zone is the
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same as in the laminar case, as occurs at the large-scale boundary of this regime, thenSn must equalSL. Indeed,
Sn = (1/ρ0)

∫

ρẎdζ, whereρ0 is the fuel density,̇Y is the reaction rate, andζ is the coordinate normal to the flame.
SinceẎ , 0 only in the reaction zone where it does not differ from the laminar flame, it follows thatSn = SL. What
does then determineST in the thin reaction zone regime? Is it folding and stretching of the flame by turbulence,
implying the validity of eq. (1), or the microscopic turbulent transport represented by eq. (2), or both? How does the
balance between the two processes change with turbulent intensity? Finally, is the effect of high-speed turbulence on
the flame limited to the two processes discussed above or do other mechanisms also play a role?

Before these questions can be addressed, several conceptual difficulties must first be resolved. Most importantly,
the definition of the flame surface and its area must be revisited. This question, which has a seemingly simple answer
at low turbulent intensities, becomes quite nontrivial when the flow is no longer laminar on scalesλ . δL. In this
case, different regions of the flame are affected differently by turbulence and, thus, the isosurfaces of temperature or
fuel mass fraction are not necessarily parallel. Furthermore, without an accurate definition of the flame surface, it is
not clear what the local burning speed of the flame is, since this quantity typically describes flame propagation normal
to its surface and determining its local value requires integration of the distribution oḟY normal to the flame surface,
as was discussed above.

In recent years, the advent of direct numerical simulations(DNS) has provided a tool permitting the mechanisms
that determineST to be directly investigated. DNS have been used by a number ofgroups to study the dynamics and
properties of turbulent flames [9]-[11] (also see a review by[22]). With the exception of the work by Aspden et al.
[9, 10] that analyzed the fully distributed thermonuclear flame, these studies generally assume relatively low turbulent
intensities. Several authors also did explicitly considerthe relation betweenST andAT . Bell et al. [20] analyzed
the three-dimensional (3D) DNS of a statistically planar turbulent methane flame and determined thatI deviates
from unity by. 10%. A similar estimate was obtained by Khokhlov [23] in 3D simulations of Rayleigh-Taylor
driven thermonuclear flames in degenerate matter. Both of these studies, however, considered reactive mixtures in
which Le , 1 and, therefore,I would not be expected to be exactly equal to one. In this context, the result of
[23] is particularly interesting since degenerate matter is characterized byLe ≫ 1 and typically in excess of 103.
Furthermore, both Bell et al. [20] and Khokhlov [23] considered turbulent intensities which were too low to allow
small-scale motions to penetrate efficiently the interior of the flame. For instance, in [20], the characteristic turbulent
velocity was≈ 4.3SL, and in [23], it reached values. 12SL. Consequently, no effects of the microscopic turbulent
transport would be expected in these cases.

In this respect, the work of Hawkes & Chen [21] is of particular interest as it considered the validity of eq. (1) in the
thin reaction zone regime. They analyzed simulations of lean, statistically flat turbulent methane flames at turbulent
intensities.28.5SL and found values ofI within a few percent of unity, with the exception of the methane-hydrogen
flame for whichI = 1.18 was determined. Interpretation of the implications of these results for the thin reaction zone
regime, however, is complicated by the two-dimensional (2D) nature of their simulations. Moreover, the turbulent
integral scale was< δL, which substantially suppressed flame wrinkling and prevented the development of a highly
convolved flame which would typically be expected to form in arealistic setting.

The studies performed to-date, thus, generally show that, at low turbulent intensities, the increase inST is indeed
almost completely determined by the growth ofAT . At the same time, they leave open the questions discussed above
regarding the mechanisms controllingST in the thin reaction zone regime, let alone at higher turbulent intensities.

The objective of this paper is to begin addressing these questions systematically by first considering the interaction
of a statistically planar, turbulent flame with the steady, homogeneous, isotropic turbulence. We assume sufficiently
high turbulent intensity to represent the regime that is borderline between thin and broken reaction zones, according
to the traditional combustion regime diagrams [5, 24, 25] (cf. Fig. 2 in [11]). In other words, we consider the highest-
intensity turbulence, which has been hypothesized to allowfor the existence of a flame with the internal structure of
the reaction zone that is essentially not affected by turbulent transport. The turbulent r.m.s. velocity of the flow in
cold fuel isUrms ≈ 35SL, leading to the Damköhler numberDa = 0.05 and Gibson scaleLG ≈ 3× 10−4δL. Here we
focus on theLe = 1 situation to exclude thermodiffusive effects as a potential source of variations of the local flame
speed. Developing rigorous understanding of this simpler case will then serve as a starting point for the study of more
realistic situations represented by more complex chemistry.

This paper continues the analysis of the simulations first presented in [11]. The primary focus of [11] was a de-
tailed study of flame properties and evolution in the presence of such high-speed turbulence. In particular, a method
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was presented which allowed the direct determination of theinternal structure of the flame based on its actual 3D
configuration inside the flame brush. The analysis showed that the preheat zone is broadened by turbulence while the
reaction-zone structure remains virtually identical to that of the planar laminar flame. Therefore, this study demon-
strated that, even under the action of such intense turbulence, the system can be classified as being in the thin reaction
zone regime.

Our starting point in this work is the question of the definition of the flame surface area in the high-speed turbulent
flow. Answering this will then allow us to determine whether arelation betweenST andAT , similar to eq. (1), can
indeed be established and, thus, which processes controlST in the thin reaction zone regime.

2. Numerical method and simulations performed

2.1. Physical and numerical models

Here we summarize the physical model, the numerical method used, and key aspects of the simulation setup. A
more detailed discussion can be found in [11].

We solve the system of unsteady, compressible, reactive flowequations,

∂ρ

∂t
+ ∇ · (ρu) = 0, (3)

∂ρu
∂t
+ ∇ · (ρu ⊗ u) + ∇P = 0, (4)

∂E
∂t
+ ∇ ·

(

(E + P)u
)

− ∇ ·
(

K∇T
)

= −ρqẎ, (5)

∂ρY
∂t
+ ∇ ·

(

ρYu
)

− ∇ ·
(

ρD∇Y
)

= ρẎ. (6)

Hereρ is the mass density,u is the velocity,E is the energy density,P is the pressure,Y is the mass fraction of the
reactants,q is the chemical energy release, andẎ is the reaction source term. The coefficients of thermal conduction,
K , and molecular diffusion,D, are

D = D0
Tn

ρ
,
K

ρCp
= κ0

Tn

ρ
, (7)

whereD0, κ0, andn are constants, andCp = γR/M(γ − 1) is the specific heat at constant pressure. The equation of
state is that of an ideal gas. Chemical reactions are modeledusing the first-order Arrhenius kinetics

dY
dt
≡ Ẏ = −ρYBexp

(

−
Q

RT

)

, (8)

whereB is the pre-exponential factor,Q is the activation energy, andR is the universal gas constant.
Table 2 summarizes the parameters of the physical model usedas well as the resulting properties of the planar

laminar flame [11]. These parameters are based on a simplifiedreaction-diffusion model designed to represent the
stoichiometric H2-air mixture [26]. We refer to [11, 26] for the detailed discussion of the limitations of applicability
of this model for the description of the actual H2-air mixture.

Eqs. (3)-(8) are solved using the code Athena-RFX [11] – the reactive flow extension of the magnetohydrody-
namic code Athena [27, 28]. Athena-RFX is a fixed-grid, massively parallel, finite-volume, fully conservative code. It
implements a variant [28] of the fully unsplit corner-transport upwind (CTU) algorithm [29] and its 3D extension pre-
sented in [30], in conjunction with the PPM spatial reconstruction [31] and the approximate nonlinear HLLC Riemann
solver. Overall, the code achieves 3rd-order accuracy in space and 2nd-order accuracy in time. A detailed description
and an extensive suite of tests of the hydrodynamic integration algorithm can be found in [27, 28]. Implementation
of the reactive-diffusive extensions in Athena-RFX, along with the results of tests including convergence studies, is
discussed in detail in [11, 32].

The simulations presented here model flame interaction withsteady, homogeneous, isotropic turbulence, described
by the classical Kolmogorov theory [33]. Turbulence driving is implemented using a spectral method [11, 32] similar
to the one used in [34, 35]. In this method, velocity perturbationsδû(k) are initialized in Fourier space, and each
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componentδû′i (k) is an independent realization of a Gaussian random field superimposed with the desired energy
injection spectrum. Subsequently, nonsolenoidal components ofδû(k) are removed to ensure that∇ · δu(x) = 0. An
inverse Fourier transform ofδû(k) givesδu(x), the velocity perturbation field in the physical space. Theδu(x) is
normalized to provide a constant rateε of kinetic-energy injection, and the total momentum in the perturbation field is
subtracted fromδu(x) to ensure that no net momentum is added to the domain, i.e.,

∫

ρδu = 0. The resulting velocity
perturbations are added to the flow fieldu(x) at every time step, and the overall perturbation pattern isregenerated at
every time interval∆tvp ∼ 10∆x/cs, wherecs is the maximum sound speed in the domain and∆x is the computational
cell size.

Energy is injected only at the scale of the domain width,L, to obtain the Kolmogorov-type spectrum. The resulting
turbulence is statistically steady, isotropic, and homogeneous with the inertial range of the energy cascade extending
all the way to the energy injection scale (Fig. 1). Moreover,since the velocity perturbation field is divergence-free, no
compressions or rarefactions are artificially induced as a result of driving.

Eqs. (3)-(6) do not explicitly include physical viscosity,but instead rely on numerical viscosity to provide the
kinetic-energy dissipation. By systematically varying the numerical resolution in this approach, the energy spectrum
can be extended to progressively smaller scalesλ ≪ δL,0 while maintaining the spectrum constant on larger scales.
This is illustrated in Fig. 1, which shows instantaneous kinetic energy spectra in the cold nonreactive flow immediately
before the flame is initiated in the computational domain in three simulations with progressively increasing resolution.
Such approach allows us to vary only the intensity of the small-scale turbulent motions, and thus to investigate their
effects by differentiating them from the effects of large scales. Furthermore, it shows the range of scales that must
be resolved in a numerical simulation in order to capture accurately the evolution of the turbulent flame. This is
particularly important in the context of high-speed turbulent reactive flows, in which it is typically impossible to
resolve the Kolmogorov scale. The analysis presented in [11] demonstrated that scalesλ ≪ δL,0 have virtually no
effect on the properties of the turbulent flame with the exception of the degree of flame surface wrinkling on the fuel
side. This showed that the evolution of the turbulent flame can be accurately reproduced without the need to resolve
scalesλ ≪ δL,0. We refer to [11] for a detailed discussion of this issue and,in particular, for a discussion of the
applicability of the results to the actual stoichiometric H2-air mixture.

2.2. Summary of simulations

Key parameters of the simulations discussed here are summarized in Table 3. The main difference between the
three calculations is the resolution, which progressivelyincreases from∆x = δL,0/8 in S1 to∆x = δL,0/32 in S3. The
domain in all cases was initialized with uniform densityρ0 and temperatureT0 (see Table 2). In S1 and S2, initial fluid
velocities were set to 0. In contrast, the velocity field in S3was initialized with the ideal energy spectrumE(k) ∝ k−5/3

extending from the energy injection scaleL to the numerical Kolmogorov scaleη = 2∆x. This initial spectrum was
normalized to ensure that att = 0 the total kinetic energy in the domain was equal to its predicted steady-state value
[32]. In S1 and S2, the flow field was allowed to evolve for the time tign = 3τed, and in S3 for the timetign = 2τed, to
develop the steady-state turbulent flow field. The corresponding instantaneous spectral density of the specific kinetic
energy immediately prior totign in S1-S3 is shown in Fig. 1. At the timetign, a planar laminar flame with its front
parallel to thex−y plane1 was initialized in the domain with the values ofρ, T, andY based on the exact laminar flame
solution. The velocity field was not modified, thereby preserving its structure that developed during the equilibration
stage.

Prior to tign, all domain boundaries were periodic. Attign, boundary conditions (BCs) along the left and right
z-boundaries were switched to zero-order extrapolation in order to prevent pressure build-up inside the domain and
to accommodate the resulting global fluid flow. Reflections ofthe acoustic perturbations caused by such BCs can be
neglected in comparison with the acoustic noise generated by the turbulent flow field itself, and overall such choice of
the BCs was found not to introduce any unphysical artifacts and thus not to affect the solution accuracy. Furthermore,
any potential effect of the outflow BCs was minimized by the large length-to-width ratio of the computational domain,
which allowed the flame brush to remain sufficiently far from the boundaries at all times [11]. Hereafter, for simplicity
we refer to the moment of ignition ast = 0.

1The longest dimension of the domain is along thez-axis.
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Energy is injected into the domain with the constant rateε per unit volume for the total duration of the simulations
to provide steady driving of the turbulent flow. The value ofε was chosen to produce a high-intensity turbulence field
that, however, was weak enough to minimize the probability of creating weak transonic shocklets arising from the
intermittency in turbulent flow. The characteristic turbulent velocities and the turbulent integral scale of the steady-
state flow before the moment of ignition are listed in Table 3.Corresponding values of the Damköhler number and
the Gibson scale, given in the table, show thatDa ≪ 1 andLG ≪ δL,0. Prior analysis of the resulting structure of
the turbulent flame demonstrated that, despite the high turbulent intensity, small-scale turbulence fails to penetrate the
internal structure of the reaction zone, and the system evolves in the thin reaction zone regime [11].

The following two key global characteristics of the turbulent flame are used extensively in this work. The width
of the turbulent flame brush is defined as

δT = z1,max− z0,min, (9)

wherez0,min andz1,max are defined as

z0,min = max(z) : Y(x, y, z) < 0.05∀ (x, y, z< z0,min),
z1,max= min(z) : Y(x, y, z) > 0.95∀ (x, y, z> z1,max).

(10)

In other words,z0,min marks the rightmostx-y-plane, to the left of which is pure product, whilez1,max marks the
leftmostx-y-plane, to the right of which is pure fuel. This is illustrated in Fig. 2. The turbulent flame speed is defined
as

ST =
ṁR

ρ0L2
, (11)

whereṁR is the total rate of fuel consumption inside the flame brush, i.e., the total mass of reactants which is trans-
formed to product per unit time. The detailed discussion of this choice of the definition ofST can be found in [11].

Kinetic energy dissipation in the turbulent flow in the domain causes gradual heating of the fuel. The resulting
relative increase in the internal energy,Et, and temperature of the nonreactive flow in one eddy turnovertime,τed, can
be accurately estimated as [11, 32]

Et − Et,0

Et,0
=

T − T0

T0
= DKγ(γ − 1)Ma2

F . (12)

Here the constantDK = 0.5 andEt,0 is the thermal energy in the domain att = 0. Based on values ofγ from Table 2 and
MaF from Table 3,T increases by≈1.8 K overτed. Consequently, by the end of the simulation, the fuel temperature
in the domain rises fromT0 = 293 K to≈ 320−330 K.2 As a result of such change in the thermodynamic state of
fuel, the corresponding laminar flame properties also vary with time. In particular, this concerns the instantaneous
thermal width,δL(t), and speed,SL(t), of the laminar flame, which will deviate from their initialvaluesδL,0 andSL,0

corresponding to the fuel temperatureT0 and pressureP0 (Table 2).
In order to determineδL andSL in simulations S1-S3, we found at each timeTaver(t) andPaver(t) averaged over all

cells located between the planesz= z1,max+ L andz= z1,max+ 2L. This provided the average current thermodynamic
state of fuel entering the flame brush. Based onTaver andPaver, an exact laminar flame solution was constructed, which
gave the instantaneous values ofδL(t) andSL(t). This analysis demonstrated that in the simulations,δL decreases by
. 15%. TheSL changes more substantially increasing by. 25%. Thus, in order to consider accurately the nature of
the turbulent flame speed in the high-speed turbulent reactive flows, it is important to account for the increase in the
local burning speed of the flame due to the turbulent fuel heating. Consequently, in our further analysis, we relateST

to SL rather thanSL,0.
Detailed discussion of the turbulent flame evolution in the simulations is given in [11]. Here, for completeness,

we reproduce in Fig. 3 for all three calculations the time histories ofδT , normalized byδL, as well asST , normalized
by SL (cf. Fig. 4 in [11]).

Finally, Table 4 lists the time-averaged values of bothδT/δL andST/SL [11] as well as of other key characteristics
of the turbulent flame discussed below. Table 4 also shows thecorresponding order of self-convergence for each
quantity listed. Since the computational cell size decreases progressively by a factor of 2 for each simulation, the

2Temperature increase occurs, on average, at constant density.
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order of self-convergenceO(φ) of a variableφ is defined as

O(φ) = log2















|φS1 − φS3|

|φS2 − φS3|















. (13)

3. Surface area and density of the fuel mass fraction isosurfaces

3.1. Isosurface area

Fig. 4a,b shows the evolution of the surface areasA0.01 and A0.99 of the isosurfaces of the fuel mass fraction
Y = 0.01 andY = 0.99, respectively. All isosurfaces are constructed using the “marching cubes” algorithm. These
isosurfaces represent the outer boundaries that separate the flame brush from pure product and pure fuel. All values are
normalized by the domain cross-sectionL2 corresponding to the surface area of the planar laminar flameunperturbed
by turbulence. In principle, the normalization should be performed over some average surface area of the flame brush,
thus reflecting its overall large-scale shape. With sufficient accuracy, however, the turbulent flame in the system
considered here can be viewed, on average, as a planar propagating front, and thus we normalize over its areaL2.

Fig. 4a shows thatA0.01 exhibits substantial variability, similar toδT andST (cf. Fig. 3). There is a clear corre-
spondence between the peaks and troughs ofA0.01 andST and, to a lesser extent,δT . Moreover, in a manner similar
to δT andST , A0.01 varies less with increasing resolution, and it appears on average to have converged.

Such correlation betweenA0.01 andST reflects the evolutionary cycle of the flame brush, discussedin [11]. In the
turbulent flame, which on average is in a steady state, the influx of fresh fuel and the rate of its consumption never
perfectly balance each other. Instead, periodically either one or the other process dominates. In particular, an increase
in the flame surface area inside the brush, and the associatedincrease inδT , leads to a higherST . This causes rapid
consumption of fuel inside the brush, decreasing both the flame surface area and the overall width of the flame brush.
The result is a slower, less convolved flame, which is thus more susceptible to the action of turbulence. This leads to
increased folding and stretching of the flame, and the cycle repeats.

The behavior ofA0.99 is pronouncedly different. There appears to be no correlation between variations in A0.99

and eitherδT or ST . Moreover, with increasing resolution, the magnitude of the variations increases, and there is no
evidence of convergence of the growing average values ofA0.99. We will consider the correlation betweenAY and
bothST andδT in a more quantitative form in§ 4.

These conclusions regarding the change ofA0.01 andA0.99 with resolution are supported by Fig. 4e, which shows
the full normalized time-averaged distributionsAY/L2 for all values ofY. In simulation S1,A0.01 andA0.99 are nearly
equal. With increasing resolution, however, they diverge to the point that, in S3, there is almost a factor of 2 difference
between them. Values ofA0.01 steadily decrease with resolution and they indeed demonstrate convergence. At the
same time,A0.99 increases with resolution, and the difference between S2 and S3 is only marginally smaller than
between S1 and S2.

This behavior is part of a broader qualitative change in the overall shape of the distribution ofAY that occurs
aroundY ≈ 0.5, i.e., at the boundary of the reaction and preheat zones. The lower resolution of S1 suppresses small-
scale turbulent motions, which, in turn, causes less wrinkling of the isosurfaces in the preheat zone. As a result, the
flame-brush surface appears similar both on the product and fuel sides (cf. Fig. 3 in [11]). With higher resolution,
however, isosurface wrinkling becomes more pronounced with increasing distance from the reaction zone, and the
distribution ofAY develops a distinctive inverted-S shape, as seen in Fig. 4e.The consequence of this was observed
in [11], which reported a much more highly convolved flame-brush surface on the fuel side in calculations S2 and S3.
We will discuss the role of small-scale turbulence in further detail in§ 3.4.

Profiles ofAY in S2 and S3 are closer to each other in the reaction zone than in the preheat zone (Fig. 4e). Table 4
shows that in the region of peak reaction rate, i.e., atY ≈ 0.15, AY/L2 exhibits the 3rd-order convergence. This
is substantially faster than what would be expected for an overall 2nd-order-accurate code. Moreover, in all three
calculations,AY varies the slowest inside the reaction zone, i.e., forY ≈ 0.15− 0.6. This shows that isosurfaces
of Y, on average, follow each other relatively closely within the reaction zone, which thus can be viewed as being
uniformly folded and stretched by turbulence as a coherent structure. This is consistent with the very low variability
in the reaction zone of the instantaneous profiles ofY andT, which represent the internal flame structure [11].
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3.2. Isosurface density

The analysis of the isosurface area distribution does not show how the flame is organized inside the flame brush
and, in particular, how tightly it is packed. More specifically, the question arises whether variations in the isosurface
area seen in Fig. 4a,b can be accounted for only by the change in the turbulent flame thickness, or whether they are
also related to how the flame is folded inside the flame brush.

Consider the surface density of the fuel mass fraction isosurfaces, defined as the isosurface area for a givenY
normalized by the effective flame-brush volume,

ΣY =
AY

δTL2
. (14)

A detailed discussion of this definition ofΣY and, in particular, of the choice of the uniform normalization by the full
flame-brush volume is given in Appendix A.

The evolution ofΣ0.01 andΣ0.99 is shown in Fig. 4c,d. The overall trends are similar to thoseexhibited byA0.01 and
A0.99. In particular,ΣY is lower on the product side of the flame. Similar toAY, ΣY rapidly converges with resolution
at lower values ofY and shows virtually no convergence in the preheat zone. Mostimportant, there is substantial
variability in ΣY, especially on the fuel side, whereΣY changes by more than a factor of 3 in the highest resolution
case. This tighter packing of the isosurfaces, which occursperiodically in the course of system evolution, suggests
that the increase inAY is associated not only with the increase ofδT but also ofΣY.

Fig. 4f shows the time-averaged distributions ofΣY in simulations S1-S3. Comparison with Fig. 4e demonstrates
that bothAY/L2 andΣY show remarkably similar behavior. The time-averaged values of ΣY are also not constant,
but, instead, for sufficiently high numerical resolution, they progressively increase through the flame interior from its
product side to the fuel side. The resulting inverted-S shape of the profiles is very similar to that ofAY with bothAY

andΣY at the two extreme values ofY (Y = 0.01 and 0.99) differing in S3 by almost a factor of two. Furthermore,
similar toAY, ΣY varies the least in the interior of the reaction zone, i.e., for Y ≈ 0.15−0.6, while outside this region it
shows a strong dependence onY. Just outside the reaction zone, individual profiles begin to diverge from each other,
with the variation between them becoming progressively larger for higher values ofY.

In the reaction zone, values ofΣY for all three calculations are much closer than those ofAY. In fact, Table 4
shows thatΣY exhibits 4th-order convergence compared with 3rd-order convergence forAY. As a result, values ofΣY

are virtually identical forY ≈ 0.01− 0.4 in S2 and S3. On the other hand, in the preheat zone, the profiles ofΣY

diverge more than in the case ofAY. This shows that the effects of small-scale turbulent motions on the reaction and
the preheat zones are, in fact, even more disparate in terms of their ability to provide tight folding of the isosurfaces,
compared with their ability to increase the isosurface area.

Flame surface density is a quantity used both in experimental and theoretical combustion research. In particular,
Σmax is defined as the surface density in the region of the flame brush with mean reactedness ¯c = 0.5, wherec =
(T − T0)/(TP − T0) andTP is the post-flame temperature. It can then be shown that [3]

Σmax=
A′0.5
δTA′L

, (15)

whereA′0.5 is the flame surface area based on ¯c = 0.5, andA′L represents the average area of the flame brush. In a
system described by the one-step Arrhenius kinetics, ¯c = 0.5 corresponds toY = 0.5. Therefore,A′0.5 ≡ A0.5. At
the same time, in a planar brushA′L = L2, as was discussed in§ 3.1. Thus,Σmax is equivalent toΣ0.5 as given by
eq. (14). It is reasonable then to compare values ofΣ0.5 in simulations S1-S3 with those ofΣmax obtained in other
experimental and numerical settings. In particular, in S3,Σ0.5 = 0.73 mm−1. This is comparable to the range of values
of Σmax≈ 0.12− 0.6 mm−1 obtained in a number of experimental studies using a wide variety of flame configurations
(see [3] for a summary table). The fact that the value in S3 is somewhat larger is not surprising, given that the turbulent
intensity in it is substantially higher than in the experiments.

Overall, however, the traditional definition ofΣ [3] is not equivalent to the definition ofΣY used here unless
Y = 0.5. Therefore, unlikeΣmax, Σ0.5 is not necessarily the maximum value ofΣY for all values ofY. Fig. 4f shows
that while in S1Σ0.5 is indeed approximately the largest value, this is not the case in S2 and S3. Nonetheless, in all
three calculations,Σ0.5 is representative of the values ofΣY throughout the reaction zone with the difference between
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Σ0.5 andΣ0.15 being≈6−9% in the higher-resolution cases.

3.3. Relation between AY andΣY

Fig. 5 shows the relation between the isosurface area and density in three key regions of the flame: the peak
reaction rate (Y = 0.15), the boundary of the preheat and reaction zones (Y = 0.5), and the coldest region of the
preheat zone (Y = 0.95). A pronounced linear correlation betweenAY/L2 andΣY exists throughout the flame interior.
This demonstrates that at all values ofY, an increase ofAY is greatly influenced by the associated tighter packing of
the isosurfaces inside the flame brush.

With increasingY the averageAY/L2 andΣY become larger, as was seen in Fig. 4e,f, due to the overall shift of
the distributions toward larger values of bothAY/L2 andΣY. Note also a slight increase both in the scatter of the
distribution and the slope of its least squares fit at higherY. Thus, isosurfaces of higher fuel-mass fractions are indeed
consistently more tightly packed than at lowerY. This is in agreement with the observation that the flame surface is
wrinkled on finer scales on the fuel side than on the product side [11].

3.4. Distributions ofAY andΣY and the effects of small-scale turbulence
How do these results concerning the distributions ofAY andΣY, shown in Fig. 4e,f, relate to previous conclusions

[11] regarding the inability of the turbulent cascade to penetrate the flame interior and the role of small-scale turbulent
motions? As was discussed in§ 2.1 (also see [11] for further details), the progressive increase in resolution from S1
to S3 extends the turbulent cascade to smaller scales, and this leads to a substantial increase in the energy of turbulent
motions on scalesλ < δL in nonreactive turbulence. This increase in resolution wasfound to cause the flame surface
on the fuel side to be wrinkled on progressively finer scales,while remaining virtually unchanged on the product
side. Furthermore, it was determined that the deviation of the internal turbulent flame structure from that of the
planar laminar flame increases with decreasing temperature. These two results showed that the effects of small-scale
turbulent motions are most pronounced in the coldest parts of the preheat zone. With increasing temperature, these
effects diminish and they completely disappear once the reaction rate becomes significant [11].

The results presented above are consistent with this picture. The steady growth ofAY/L2 andΣY on the fuel
side of the preheat zone with increasing resolution shows that more intense small-scale motions are indeed present
there, folding isosurfaces on progressively finer scales. It must be emphasized that the change inAY alone does not
necessarily mean that it is caused by finer wrinkling on smaller scales. Only when viewed in conjunction with the
surface density, which shows a very similar dependence onY, does such increase inAY serve as a strong indication of
the small-scale wrinkling.

With increasing temperature, not only doAY/L2 andΣY decrease rapidly, but also profiles for S2 and S3 begin
to approach each other. This means that the main difference between these two simulations, namely the presence of
more energetic small-scale turbulence in S3, is being eliminated and, thereby, motions on scalesλ < δL are gradually
suppressed. Since it is these small scales that enhance the diffusive transport, which in turn broadens the preheat zone,
their suppression causes the internal flame structure to approach that of the planar laminar flame [11].

As the reaction rate becomes substantial atY . 0.5, bothAY/L2 andΣY become similar in S2 and S3. This
suggests that, at this point, only scalesλ & δL remain energetic. Indeed, these scales are originally the same in both
calculations (cf. Fig. 1). Consequently, they generate similar isosurface areas and densities. Since these scales cannot
support small-scale diffusive transport, any broadening of the internal flame structure effectively disappears atY . 0.5
[11]. Further decrease inAY/L2 andΣY is the consequence of the continued suppression of the progressively larger
scalesλ > δL.

There is one important distinction between the distributions ofAY/L2 andΣY and the time-averaged profiles ofY
andT, which represent the internal flame structure [11]. TheY andT profiles showed very little variation between
simulations S1-S3 not only in the reaction zone, but also in the preheat zone. This is in contrast with the distributions
AY/L2 andΣY, which differ substantially in the preheat zone even between S2 and S3. Such discrepancy suggests that
small scales,λ < δL, contribute differently to the turbulent diffusive transport and to the wrinkling of the isosurfaces.
The former is primarily governed by the largest of these small scales, i.e., scales not much smaller thanδL, since these
scales are associated with the highest velocities. The energy contained on these scales is close in all three simulations
and, thus, they produce the same structure of the broadened preheat zone. At the same time, all scales smaller than
δL contribute to the isosurface wrinkling, and the different energy content of these scales causes the distributions of
AY/L2 andΣY to differ substantially in the preheat zone.
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Qualitatively, both the internal flame structure describedin [11] and the distributions ofAY andΣY presented here
create a consistent picture of the transformation that turbulence undergoes as it passes through the flame. Changes
in the energy budget between different scales, which are most certainly accompanied by the development of both
anisotropy and inhomogeneity of the velocity field, are complex. While the evidence presented here and in [11]
provide hints about the nature of this transformation, the details remain unknown. For instance, are the energy release
and the resulting fluid expansion the only effects responsible for altering the turbulent field and redistributing energy
between different scales? What are the relative contributions of various small scales to the increase inAY andΣY?
How does the shift in balance between small and large scales with increasing temperature change at different turbulent
intensities? All of these questions need to be addressed in future studies.

4. What is the flame surface area?

In the wrinkled and corrugated flamelet regimes, in which eq.(1) is typically applicable, the flow is laminar on
scalesλ . δL. As a result, isosurfaces of different values ofY are parallel to each other, the flame is folded by
turbulence as a coherent structure, and, therefore, it has awell-defined surface areaAT . Consequently, the stretch
factor I has a unique value at each moment in time, and so it directly shows how much of the increase ofST can be
ascribed to the increase ofAT .

In contrast, in the thin reaction zone regime discussed here, results presented in§ 3 demonstrate that the flame,
folded inside the flame brush by high-intensity turbulence,has a complex internal structure. The various parts of the
flame have distinctly different responses of its various parts to the action of turbulence. Consider, by analogy with
eq. (1), the factorIY, which relates the increase of the turbulent flame speed relative to its planar laminar value to the
increase ofAY rather thanAT ,

ST

SL
= IY

AY

L2
. (16)

In this case, unlikeI , IY is a function ofY. In particular, based on the data shown in Fig. 4,IY can vary by as much as
a factor of 4 depending on the choice ofY. As a result, values ofIY close to and substantially larger than unity can be
found in different regions of the flame.

This shows that before we can answer the question whether theobservedST can be accounted for by the increase
in the flame surface area, we must first determine what this area is in such high-speed turbulent flows, and whether
such a concept is even applicable in this regime. In particular, what value ofY fully and accurately represents the
overall behavior of the turbulent flame? We address these questions by considering the correlation ofAY with two
global properties of the turbulent flame, its speed and width.

4.1. Relation between AY and ST

Fig. 6 shows correlations betweenST/SL andAY/L2 calculated for the same three representative values ofY as in
Fig. 5, namelyY = 0.15, corresponding to the region of peak reaction rate,Y = 0.5, corresponding to the boundary
between the reaction and the preheat zones, andY = 0.95, corresponding to the coldest part of the preheat zone. Left
panels of Fig. 6 show the time-evolution of all quantities, and the right panels show the corresponding correlation
scatter plots.

Since both the local flame speed and the induction time of the unburned fuel have finite values, there must exist
a delay in the response ofST to the changes in the flame configuration, represented by the areas of its isosurfaces.
Therefore, the degree of correlation betweenST andAY is a function of a time lag,∆t, between these two quantities.
For each value ofY in Fig. 6, we determined the time lag,∆tc, that produced the best correlation. This was done
by directly calculating the cross-correlation betweenST(t)/SL and AY(t)/L2 and finding its maximum. The value
obtained for∆tc was verified by determining the least squares fit for the distribution of ST(t)/SL vs. AY(t − ∆t′)/L2

and by finding∆t′c that maximized the slope of the fit and minimized its residuals. The values ofAY/L2 in Fig. 6 were
then shifted in time with respect toST/SL by the corresponding time lag∆tc given in the lower right corner of the
panels (a), (c), and (e).

The first key conclusion emerging from Fig. 6 is thatST andAY become progressively less correlated with in-
creasingY. While the correlation is pronounced throughout the reaction zone and is exceptionally strong near the
peak reaction rate,ST andAY are only very weakly correlated in the colder parts of the preheat zone. Note that panels
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(b), (d), and (f) have the same scale, which shows the relative increase in the scatter of the distribution and its overall
shift to higher values ofAY in the preheat zone.

The time delays that give the best correlation between the two quantities are positive, and thus they show thatST

does indeed lag behindAY. Moreover, the magnitude of∆tc increases with increasingY. Qualitatively, this agrees
with the fact thatST at any given moment is primarily determined by the region of the highest reaction rate, which
corresponds to the values ofY close to 0.15. Consequently, the time delay betweenST and the area of the isosurface
representing the peak reaction rate is close to zero, namely0.04τed. Since turbulence reorganizes the flame on a
timescale∼ τed, such a small lag is too short for the flame structure to changein any significant way. Therefore, the
correlation betweenA0.15 andST is very strong.

At the same time, since the reaction rate is fairly low atY = 0.5, the contribution of this region to the overall
turbulent flame speed is small. Burning still needs to accelerate substantially in this area in order for it to become the
new region of peak reaction rate, which will then predominantly determine the magnitude ofST . The time required
for this to occur results in a longer time delay, namely 0.11τed. During this time, however, turbulence is able to change
the flame structure more strongly than in the case ofY = 0.15. As a result, the degree of correlation betweenA0.5 and
ST decreases.

In the coldest regions of the preheat zone, there is no correlation betweenST andA0.95 at small values of∆tc. We
found evidence of weak correlation for a much larger time delay∆tc = 0.61τed. This value, however, is comparable
to the time during which the turbulence completely reorganizes the structure of the turbulent flame. Therefore, by
the time burning reaches the reactants in the outer regions of the preheat zone, the connection between their original
distribution and the resulting turbulent flame speed is significantly disrupted.

We also found weak correlation betweenA0.95 andA0.15 with the time lag forA0.95 being∆tc = 0.56τed and the
slope of the least squares fit of 0.4907.3 This weak correlation betweenA0.15 andA0.95 is consistent with a similarly
weak correlation betweenST andA0.95 found at a comparable time lag. In particular, it reflects thefact that after the
time≈0.6τed, burning reaches the outer part of the preheat zone. As a result, the formerY = 0.95 region becomes the
newY = 0.15 region and thus the new site of the peak reaction rate whichnow determinesST . Substantial change in
the flame-brush structure during this time, however, again leads only to weak correlation betweenA0.15 andA0.95.

In order to verify this physical meaning of the obtained timedelays, values of∆tc can be compared with the
characteristic induction time,τind, in the planar laminar flame. Theτind is the time for a fluid element to reach the
peak reaction rate starting at some initial temperature or,equivalently, fuel mass fraction. In reactive mixtures with
large activation energies, such as H2-air considered here,τind is also approximately the time necessary to reach the
post-flame temperature,TP [36].

Theτind can be calculated using the velocity distributionUL(x) in the exact planar laminar flame solution as

τind(Y′) =
∫ x(Y∗)

x(Y′)

dx
UL(x) − U∞

. (17)

HereU∞ is the fuel velocity at infinity,Y′ is the initial fuel mass fraction of the fluid element, andY∗ is the fuel mass
fraction corresponding to the peak reaction rate. Instead,to maintain consistency with the numerical simulations, we
computedτind directly by solving the full time-dependent reactive Navier-Stokes equations (3)-(8) on a uniform 1D
grid with the same numerical integration method used for S1-S3 (§ 2.1). The flame was initialized as a discontinuity
with the fuel and product temperature and density equal toT0, ρ0 and TP,0, ρP,0, respectively, given in Table 2.
Constant pressureP0 and zero velocity were set throughout the domain. We introduced an additional advection
equation describing a scalarξ that was not subject to diffusion or reactions and was only advected with the flow. After
the steady-state structure of the flame had been establishedin the computational domain,ξ was set to unity in one cell
corresponding to the desired initialT′ or, equivalently,Y′, and to zero everywhere else. As the system evolved, the
fluid element marked with the scalarξ moved through the flame and burned. The time it took this fluid element to
reach peak reaction rate, i.e.,Y = 0.15, gaveτind(Y′).4

3In contrast, we were unable to find any statistically significant correlation or anticorrelation betweenΣ0.15 andΣ0.95 at any time lag.
4The distribution ofξ would spread with time over several cells due to numerical diffusion. To compensate for this, we used very high resolution,

namely∆x = δL,0/128, which is much larger than the resolution necessary to obtain an accurate laminar flame solution, i.e., typically∆x = δL,0/4
[32]. As a result, the distribution ofξ was found to spread over the range of values ofY with the full width at half maximum equal to∆Y ≈ 0.05. We
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Using this procedure, we found that for a planar laminar flame,

τind ≈ 0.27τed ≈ 2.46∆tc, for Y = 0.5,
τind ≈ 1.29τed ≈ 2.12∆tc, for Y = 0.95.

(18)

When turbulent heating of the fuel is taken into account (see§ 2.2), i.e., when the fuel temperature in this calculation
is increased to 320 K fromT0 = 293 K while maintaining constant densityρ0, these values ofτind decrease by
≈ 20− 25%. Further details and, in particular, the full distributions ofτind throughout the flame for these two fuel
temperatures, can be found in Appendix B.

The calculated time lags are, therefore, within a factor of≈2 of the corresponding values ofτind, which, given the
statistical nature of∆tc, is reasonable agreement. This shows that the correlation time delays for the distributions of
ST/SL andAY/L2 in the turbulent flame can indeed be associated with the induction times necessary for the burning
to accelerate in regions with higher reactant concentrations.

The values of∆tc, however, are substantially lower than the characteristicpropagation time of the laminar flame,

τδ =
δL,0

SL,0
=

30
8

L
U
= 3.75τed, (19)

where we used the values ofL andU given in Table 3. Even forY = 0.95,∆tc = 0.61τed ≈ (1/6)τδ. Furthermore,
this ∆tc is an order of magnitude smaller than the time 1.67δL,0/SL,0 ≈ 6.3τed, which is necessary for the flame to
propagate over the characteristic distance 1.67δL,0 separatingY = 0.95 andY = 0.15 in the laminar flame structure
(cf. Fig. 7 in [11]).

A good analytical estimate for∆tc throughout the reaction zone can be obtained using the expression for the
adiabatic induction time [36],

τaind(Y′) =
( CpT′

Bqρ′Y′

)(RT′

Q

)

exp
( Q
RT′

)

, (20)

whereT′ andρ′ for a givenY′ are determined based on the exact planar laminar flame solution, and the values ofB,
q, andQ are given in Table 2. In particular, at the fuel temperatureT0 and densityρ0,

τaind ≈ 0.05τed ≈ 1.25∆tc, for Y = 0.15,
τaind ≈ 0.21τed ≈ 1.91∆tc, for Y = 0.5.

(21)

Using the specific heat at constant volumeCv = R/M(γ − 1) instead ofCp in eq. (20), i.e., assuming that burning
occurs at constant volume rather than at constant pressure,would decrease the values ofτaind by ≈ 15% to 0.04τed

and 0.18τed, respectively. This shows that, even thoughτaind is typically applicable in the context of an autoignition
process rather than propagation of a flame, forY = 0.5 it provides a somewhat better approximation to the calculated
value of∆tc thanτind given in eq. (18). Further details, including the effects of turbulent fuel heating onτaind, are given
in Appendix B.

Finally, in addition to the strong correlation between the values ofST andA0.15, the distribution shown in Fig. 6b
has another important property that is not present at highervalues ofY. The linear least squares fit for the case
Y = 0.15, shown with a solid line in Fig. 6b, has the form

ST

SL
= 1.17

A0.15

L2
− 0.08. (22)

For A0.15/L2 = 1, this expression givesST/SL = 1.09. This demonstrates that as the flame becomes less convolved,
i.e., asA0.15/L2 → 1, it behaves progressively more like a planar laminar flame which is manifested inST → SL.
Linear least squares fits for the two other values ofY, shown in Fig. 6d,f, do not recover the value ofST/SL = 1 as
AY/L2 → 1.

assumed that the position of the fluid element being tracked was marked by the maximum of this distribution. A convergencestudy with increased
resolution, which causedξ to be distributed over progressively narrower range ofY, was used to verify that the obtained values ofτind were indeed
accurate.
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4.2. Relation between AY andδT
Next consider the correlation ofAY with the second key global characteristic of the turbulent flame, namely its

width, δT . Fig. 7 shows the correlation betweenAY/L2 andδT/L for the same three values ofY as in Fig. 6.5 The
distribution ofδT/L as a function ofAY/L2 shows the same trend observed forST/SL. In particular, the correlation
between the two quantities is also the strongest forY = 0.15 and decreases with increasingY. The values ofδT/L
andA0.95 appear to be almost completely uncorrelated. Note, however, that the correlation in the reaction zone, and,
in particular, in the region of peak reaction rate, is weakerfor δT thanST , with the distributions ofδT having a much
larger scatter.

In order to illustrate the relation between the three key quantities characterizing the instantaneous flame-brush
structure, namelyAY, δT , andΣY, each data point in Fig. 7 is colored according to the corresponding value ofΣY (cf.
Fig. 5). At lowerY, the increase of the isosurface area is associated both withthe increase in the overall extent of
the flame brush and with tighter packing of the isosurfaces. With increasingY, however, the correlation ofAY/L2

with δT/L decreases while remaining quite pronounced withΣY. This shows that the area of the isosurfaces of higher
Y changes primarily only due to their wrinkling on progressively smaller scales, as discussed in§ 3 (also see [11]).
Indeed,δT is determined predominantly by the flame folding on the largest scales. Consequently, the weak correlation
betweenAY andδT at highY demonstrates that the increase of the areas of these isosurfaces cannot be associated with
such large-scale wrinkling. Instead, this increase must betranslated primarily into tighter packing of the isosurfaces
causingAY to be correlated withΣY.

5. What determinesST in the thin reaction zone regime?

5.1. Can ST be explained by the increase in the flame surface area?

The strong correlation ofA0.15 with ST andδT , which represent both the global energetics and the global structure
of the turbulent flame, show that, in the thin reaction zone regime, isosurfaces ofY close to the peak reaction rate
accurately characterize the overall evolution of the turbulent flame. Consequently, for the reactive mixture considered
here, the flame surface area,AT , and density,ΣT , are represented by the isosurface ofY = 0.15.

This conclusion is further supported by the limiting behavior of the distribution ofST/SL, which approaches unity
asA0.15/L2 → 1. In contrast, atY = 0.5, ST/SL becomes progressively less thanA0.5/L2 at smaller isosurface areas.
Furthermore, atY = 0.95, almost all values ofST/SL lie below theST/SL = A0.95/L2 line, and they become almost
half of A0.95/L2 at larger isosurface areas. InLe = 1 reactive mixtures, there are no mechanisms that can lower the
local flame speed belowSL, which would be necessary to produce values ofST/SL lower than the increase of the
flame surface area. Consequently, such properties of the distributions ofST/SL confirm that isosurfaces of higherY
cannot represent the flame surface.

With this definition of the surface area of the turbulent flame, we can now revisit the question of the relation
betweenAT and the speed of the turbulent flame in the thin reaction zone regime. This relation can be represented
by eq. (16) in whichY = 0.15, similarly to eq. (1) applicable in the wrinkled and corrugated flamelet regimes.6

Fig. 8 shows the ratioI0.15 = (ST/SL)/(A0.15/L2) for the distribution given in Fig. 6b. Time-averaged values I0.15 =

(ST/SL)/(A0.15/L2) for all three calculations are listed in Table 4.7 In particular,I0.15 = 1.14 in S3, and this value can
be viewed as converged to within a few percent with a faster than linear rate of convergence.

These results lead to the following two key conclusions:

1. In the thin reaction zone regime, the instantaneous turbulent flame speed is also primarily determined by the
increase of the flame surface area.

5Since bothAY andδT represent the same instantaneous configuration of the flame,no time delay between them is expected. Consequently, no
time shift was applied to either quantity in Fig. 7. As a check, however, we verified that indeed the cross-correlation hadits maximum at the zero
time lag.

6In light of the fact thatST andAY are best correlated whenAY is shifted in time with respect toST , the question arises whether such a time
shift should also be applied in eq. (16). In principle, an argument could be made that, due to the inherent delay in the response ofST to the changes
in the flame structure, the current value ofST is the result ofAY that existed earlier in time and, thus, this earlier value must be used to assess the
relation betweenST andAY. At the same time, as was shown, the time lag∆tc is extremely small forY = 0.15. During this time, the change in the
value ofAY is negligible and applying the time shift in eq. (16) does notcause any appreciable change in the result.

7Using instead the expressionI0.15 = (ST/SL)/(A0.15/L2) gives virtually the same result.
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2. In addition, in the course of system evolution,ST periodically exhibits an exaggerated response to the increase
in AT . For the system size and turbulence intensity considered here, this excess burning velocity can become as
high as 30% ofAT/L2.

This exaggerated response in simulation S3 is represented by values ofI0.15 > 1 in Fig. 8 and is illustrated in
Fig. 6a,b as the shaded gray area. Such a substantial deviation of I0.15 from unity brings up the following question:
what mechanism is responsible for raisingST beyond what can be attributed to the increase inAT?

5.2. Potential causes of the excess values of ST

As was discussed in§ 1, Damköhler’s concept [1] implies that the burning velocity of a turbulent flame in the
presence of sufficiently intense turbulence is determined by two processes:wrinkling of the flame surface by large-
scale turbulent motions increasingAT , and the enhancement of the local flame speedSn by the small-scale turbulence
providing stronger diffusive transport. While the simulations show that the effect of large-scale turbulence is indeed
present and has a dominant effect onST , can the observed excess values ofST be ascribed to the action of small-scale
motions?

Consider the following important characteristic exhibited by the distribution ofI0.15. Along with I0.15 substantially
larger than one, the system also periodically develops values of I0.15 within only a few percent of unity, which is
comparable to the uncertainty in estimating the instantaneousA0.15 and, thus,I0.15 (see also Fig. 6a). This shows that
at those instances whenI0.15 ≈ 1, Sn at all points of the flame surface must be almost identical toSL. Consequently,
the small-scale turbulence entering the flame, if it were directly determiningSn, would have to periodically undergo
transitions between almost complete suppression, whenI0.15 ≈ 1 andSn ≈ SL, and significant enhancement, when
I0.15 becomes as high as 1.3.

While we are unaware of any potential mechanisms that could cause such periodic complete suppression of small-
scale turbulence in the cold fuel, our analysis also does notshow any changes in the state of turbulence that could
serve as a manifestation of such suppression. In order to determine whether there exists a connection between the
instantaneous turbulent field in the domain and the resulting burning speed, we have analyzed the correlation of
several turbulence characteristics with bothST andI0.15. In particular, we considered the total r.m.s. velocity in the
domain. Furthermore, to characterize turbulence inside the flame brush and in the fuel entering it, we also considered
individual components of velocity,ui, as well as kinetic energy, 0.5ρu2

i , averaged over the volume of the flame brush
and the cubic region of sizeL located in the fuel immediately ahead of it. We were not able to find virtually any
correlation between any of these quantities and eitherST or I0.15. As an example, Fig. 9 shows the representative
correlation scatter plot ofI0.15 as a function of the normalizedx-component of kinetic energyEK,x = (ρu2

x)/(ρ0U2
l )

volume-averaged over the region discussed above. Similarly to the case of the distribution ofI0.15 vs. A0.15/L2 in
Fig. 8, the increasing trend seen in the least squares fit is too weak to determine its statistical significance based on the
available data.

These considerations suggest that the enhancement ofSn overSL by turbulent transport does not provide a plau-
sible explanation of the excess values ofST periodically developed by the flow. Consequently, a different mechanism
must augment the effect of the increasedAT .

Instead of being the result of a uniform global increase ofSn throughout the flame brush, accelerated burning can
be caused by a significant increase inSn in isolated regions of the flame surface. In those regions, however,Sn must
be much larger thanSL in order to significantly raise the overall burning speed of the turbulent flame.

Such local enhancement ofSn cannot be caused by the local inhomogeneities in the thermodynamic state of the
fuel.8 In particular, in a subsonic turbulent flow, such as the one considered here, with the turbulent Mach number
MaF substantially less than unity (see Table 2), local variations of density or temperature are much too small to affect
Sn in any appreciable way. For instance, it requires an increase of fuel temperature of over 150 K to doubleSn. We
do not observe temperature fluctuations of such magnitude inthe flow.

Sn can also be increased by the substantially higher local turbulence intensity associated with intermittency. While
we do observe intermittency in the flow field in our simulations, regions of large velocity enhancement are statistically
too rare, their spatial extent is too small, and they are muchtoo short lived to increaseSn and, thus, to make any

8The increase ofSn due to the global fuel heating by turbulence was taken into account inSL, as discussed in§ 2.2.
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significant contribution to the overall increase inST . Potential effects of turbulence intermittency on the flame have
been studied by Pan et al. [37] in the context of the Rayleigh-Taylor-driven thermonuclear flames in the interior of
a white dwarf during a Type Ia supernova explosion. Their results suggested the possibility that intermittency in the
velocity field could locally disrupt and broaden the flame, which potentially would increase the local burning speed. It
is not immediately clear, however, to what degree their conclusions apply to the system discussed here. The conditions
in the white dwarf interior considered in [37] are substantially different from those in S1-S3. Moreover, their analysis
did not consider any feedback of the flame on the turbulent field and, in particular, it did not include fluid expansion
due to heat release which invariably affects intermittency of the flow. At the same time, the role of intermittency in
the dynamics of turbulent flames does require further investigation. In particular, it would be important to extend
the analysis of Pan et al. [37] by including the feedback of the flame on turbulence under conditions characteristic of
chemical rather than thermonuclear flames.

Instead, we suggest that significant local increase ofSn does indeed take place in the turbulent flame due to the
flame collisions resulting in the creation of regions of large flame curvature. We discuss this process next.

6. Accelerated burning caused by flame collisions

6.1. Local increase of Sn in cusps

According to the theory of flame stretch (see [7] for a review), whenLe= 1, the flame is not affected significantly
[38] either by flow-induced strain or curvature. In particular, a stationary spherical flame supported by a point source
of mass, which is an example of a curved unstrained flame, has an internal structure, and thus local burning velocity,
identical to that of a planar laminar flame [7]. Such analysis, however, is typically carried out for a flame with the
curvature radiusrc ≫ δL. Using the physical model and the Athena-RFX code describedin § 2.1, we also performed
simulations of an idealized spherical and cylindrical flamepropagating inward into the stationary fuel. The results
of these simulations are, in fact, consistent with the theory. Furthermore, they show thatSn = SL not only when
rc ≫ δL, but up until the moment when the flame curvature becomes≈1/δL, i.e., until the flame effectively collapses
onto itself. At this point,Sn increases substantially. Beyond this moment, however, theflame itself effectively ceases
to exist and, therefore, the local flame speed looses its meaning. Such an idealized situation is not representative of
the conditions arising in an actual turbulent flame. Nonetheless, regions of large flame curvature∼1/δL are frequently
created in the high-speed turbulent flow considered here, and they naturally provide a mechanism for a significant
local enhancement ofSn.

The results presented in§ 3 showed that intense turbulence causes tight folding and packing of the flame inside the
flame brush. Consider the inverse of the surface density, which is a measure of an average separation between surface
elements. Given thatΣ0.15 = 0.67 mm−1 in simulation S3, the average distance between individual flame sheets is
1/Σ0.15 ≈ 1.49 mm≈ 4.7δL. At the same time,Σ0.15 can be as high as 0.97 mm−1 (Fig. 5a), resulting in an even lower
separation of≈ 3.2δL. This is comparable to the full flame widthlF ≈ 2δL (cf. Fig. 7 in [11]). Such tightly folded
flame configurations invariably result in frequent collisions of individual flame sheets.

Fig. 10 gives an example of such collision in S3. The figure shows the flame-brush structure at three times:
11.86τed (upper panel), as well as 0.1τed = 3 µs and 0.2τed = 6 µs later (middle and lower panels, respectively).
Initially, a region with a highly convolved flame develops inthe flame brush (region A). At this time,Sn ≈ SL locally
throughout region A and changes in the flame configuration dueto self-propagation can be neglected on timescales
considered in Fig. 10. As turbulent motions continue to bring individual flame sheets closer to each other, the curvature
radius of the flame becomes close toδL, and the preheat zones begin to overlap substantially over an extended region
of the flame surface. This marks the formation of two regions of high flame curvature∼ 1/δL (regions B), which
we will refer to as “cusps.” Regions C in the lower panel show that 3µs later, the flame sheets have merged and
formed two extended reaction zones, which suggests substantially accelerated burning in that area of the flame brush.
Note also a rapid decrease of the area of theY = 0.5 isosurface represented with the thin black line. Comparison of
regions B and C shows that this isosurface propagated over the distance≈0.5 mm over the time 3µs, which implies
the propagation speed (but not the local burning speed)≈ 55SL. During the time shown in Fig. 10, two other highly
elongated regions of flame collision have formed near the upper face of the domain. Thus, Fig. 10 illustrates that flame
collisions are ubiquitous in the turbulent flame, and they doproduce regions of large flame curvature. Moreover, their
evolution in Fig. 10 suggests substantial increase of both the local burning and propagation speeds in the cusps.
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Qualitatively, two different channels of cusp formation can be identified. They are shown schematically in Fig. 11.
In the first case, turbulent motions on a certain scaleλ with velocity Uλ stretch and fold the flame. As a result, a
narrow elongated structure is formed. When two flame sheets effectively collide, the curvature of the flame surface
becomes∼ 1/δL and the cusp is formed with a characteristic lengthlc ∼ λ. We will refer to this channel as “local
flame collisions,” since the cusp is formed by flame regions located close to each other both in 3D space and along the
flame surface. In the second case, turbulent motions fold theflame on a larger scale, thus not increasing its curvature
substantially. Two cusps are formed when two smoothly curved flame sheets collide. We will refer to this channel
as “nonlocal flame collisions,” since the colliding flame regions can be located far from each other along the flame
surface and they can, therefore, originate from different regions of the flame brush. In this case, the characteristic
length of the resulting cusp,lc, can be significantly smaller than the scale,λ, of the motion that produced the cusp.

In an actual turbulent flame, cusps are often created under the combined action of these two channels, an example
of which is seen in Fig. 10. Region A is initially formed by theflame surface being stretched and folded on a large
scale, as in Fig. 11b. At the same time, smaller scale motionsfold the flame surface locally, as in Fig. 11a, forming
smaller cusps seen in regions B.

While both local and nonlocal flame collisions are equivalent in terms of the resulting cusp properties, they differ
in one important respect. In the first case, curvature of the flame surface at a specific point increases gradually until
it becomes large marking the formation of a cusp. In the second case, the curvature remains small at all points of
the flame surface until the actual moment of collision when two flame sheets merge and the region of large flame
curvature is abruptly formed. These distinctive characteristics of the two processes will be important for the analysis
of their relative efficiency to form cusps at a given turbulent intensity and system size.

6.2. Structure and properties of cusps

Formation of cusps (or “folds”) by the wrinkled flame in a turbulent flow was first suggested by Karlovitz et
al.[39] (also see discussion in [40]). Their dynamical rolewas first considered by Zel’dovich [41] (also see [42]), who
suggested them as a mechanism of flame stabilization that prevents the unbounded exponential growth of the flame
surface under the action of the Landau-Darrieus instability [43]. Such regions of large curvature would have a high
propagation velocity, causing rapid annealing of the flame surface, and thus would provide an efficient mechanism to
counterbalance flame instability [41]. It must be noted thatboth Karlovitz et al.[39] and Zel’dovich [41] assumed that
cusps form due to the self-propagation of a wrinkled flame surface following the Huygens principle, rather than as a
result of flame collisions by turbulence.

It was suggested early on both by Lewis and von Elbe [40] and Zel’dovich [41] that, due to the focusing of the heat
flux into fuel,Sn ceases to be equal toSL near the tip of the cusp, and the cusp region develops a structure similar to
the tip of the Bunsen flame. The flame in [39, 40, 41, 42], however, was considered to be a gasdynamic discontinuity,
and so its internal structure was ignored. As a result, the actual increase of the local flame speed in the cusp could not
be determined.

In order to analyze quantitatively the effect of flame collisions and to determine the actual increase of Sn in the
resulting cusps, consider an idealized model of the cusps observed in Fig. 10. In particular, consider two symmetrically
located planar flame sheets propagating with the speedSL,0 and approaching each other with the inclination angle to
the mid-planeα. At the point of collision, the flame sheets merge and form a cusp. Its properties, such as its structure,
speed of propagation, and effective burning velocity, are determined in this configuration only by two parameters,SL,0

andα. Such cusps can be formed through either of the channels shown in Fig. 11.
Fig. 12 illustrates the flame structure formed in this situation. It shows the distribution of the fuel mass fraction in

two simulations performed forα = 1◦ andα = 4◦ with Athena-RFX using the same physical model as in simulations
S1-S3. The domain has the resolution∆x = δL/32 and zero-order extrapolation boundary conditions on allsides. At
t = 0, two intersecting flame sheets were initialized with the exact structure of the planar laminar flame corresponding
to the fuel temperatureT0 and densityρ0 (see Table 2). Uniform pressureP0 and zero velocities were set in the domain
at t = 0. After the initial transient stage, the flame develops the structure shown in Fig. 12. The structure of the cusp
itself does not change with time, provided that the planar flame sheets extend sufficiently far from it. Therefore,
Fig. 12 can be viewed as a steady-state solution.

Fig. 12 shows that flame collision at very low inclination angles results in the formation of a highly elongated
structure. It is formed by rapid heating and subsequent ignition of a larger amount of fuel than in the planar laminar
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flame due to the focusing of the thermal flux from two approaching flame sheets. Consequently, the extent of this
structure is determined by the size of the region in which thepreheat zones of approaching flames overlap and, thus,
create the necessary enhanced thermal flux. Since the width of the preheat zone is≈ δL,0, very small values ofα are
required for the cusp to be substantially broader thanδL,0. This can further be seen in the distributions ofY, T, and
Ẏ along the symmetry axis of the cusp shown in Fig. 13. The structure of the reaction zone in the cusp very quickly
approaches that of the laminar flame with increasingα, so that already atα ∼ 4◦ the two reaction zones become very
similar. At the same time, the preheat zone of the cusp remains substantially broadened for much larger values ofα.

There are three characteristic speeds in this problem. Sufficiently far from the tip of the cusp, the flame locally
propagates normal to its surface with the laminar flame speedSL,0, i.e., thereSn = SL,0. The cusp itself moves into
the fuel with the phase velocityUc, which results simply from the two inclined planar surfacescolliding with each
other. This speed can be determined based on purely geometrical considerations [41],

Uc =
SL,0

sinα
. (23)

This cusp propagation speed, normalized bySL,0, is shown as a solid line in Fig. 14a along withUc/SL,0 determined
as the velocity of the leftmost point of theY = 0.15 isosurface in simulations for four values ofα. Eq. (23) is within
.1% accuracy of the computed values.Uc approaches the laminar flame speed asα→ 90◦, i.e., when the two flame
sheets cease to advance toward each other. At the opposite limit of smallα, Uc can be quite large and, in principle,
it could be infinite whenα → 0◦. In particular, atα ≈ 0.5◦, Uc becomes larger than the sound speed in cold fuel
indicated with the horizontal dashed line in Fig. 14a. Note also that atα = 1◦, the value ofUc ≈ 57SL,0 is comparable
to the high propagation velocity≈55SL of cusps in regions B - C in Fig. 10 estimated in§ 6.1.

The third characteristic speed, which is the most importantfor us, is the local burning speed in the cusp,Sn. The
broadened reaction zone at low flame-inclination angles (Figs. 12 and 13b) causes more fuel to be consumed per unit
flame surface area than in the planar laminar flame, and, therefore, it leads to a larger local flame speedSn > SL,0.
Since the reaction-zone width is the largest at the tip of thecusp,Sn has its maximum there and it gradually decreases
to its laminar valueSL,0 in the planar regions of the flame sufficiently far from the cusp. The maximum value ofSn at
the cusp tip can be found as

S∗n ≡ max(Sn) =
1
ρ0

∫

ρẎdx= −
B
ρ0

∫

ρ2Yexp
(

−
Q

RT

)

dx. (24)

Here eq. (8) was used foṙY, and the integral is taken along the symmetry axis of the cuspshown in Fig. 12. Fig. 14b
shows the computed values ofS∗n normalized bySL,0 for the same four inclination angles as in Fig. 14a.

Two key conclusions emerge from Fig. 14. First,S∗n is substantially lower thanUc, being less by more than an
order of magnitude at the values ofα considered here. Second and most important,S∗n can indeed be much larger than
SL,0 at small inclination angles.

6.3. Connection between the increase of Sn in cusps and ST
We are interested, however, not just inSn but, rather, in the burning speed of an extended flame region,as this is a

direct equivalent of the turbulent flame speed. The total burning rate of the flame configuration shown in Fig. 12 is

Sc =
ṁR

ρ0
, (25)

whereṁR is the total mass of reactants converted into product per unit time. If the flame were to propagate everywhere
with the speedSL,0, thenSc = AYSL,0, whereAY is the surface area of the flame in such a configuration. In thiscase
all isosurfaces ofY would be parallel to each other and, thus,AY based on any value ofY could be used. Otherwise,

IY =
Sc

AYSL,0
> 1. (26)

HereIY is completely equivalent to the definition used in eq. (16) inthe context of the turbulent flame speed. Indeed,
substituting the definition ofST given by eq. (11) into the definition ofIY given by eq. (16) shows that ˙mR/ρ0 =
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IYAYSL,0 = Sc. Furthermore, as can be seen in Fig. 12, at lowα isosurfaces ofY do not have the same surface area.
Therefore, similarly to the case of the turbulent flame, hereIY is also the function ofY. For consistency with previous
results, we will considerI0.15 based on the isosurface ofY = 0.15 representing the peak reaction rate.

SinceSn monotonically decreases away from the cusp, bothSc and I0.15 depend on the size of the flame region
being considered. This size can be represented by the variable lengthlc, illustrated in Fig. 12, which is defined as
the distance from the leftmost point of the isosurface ofY = 0.15 in the direction of cusp propagation. Considering
different values oflc is equivalent to varying the fraction of the total flame surface area in Fig. 12 represented by the
planar section in whichSn ≈ SL,0. Consequently, this allows one to vary the relative contribution toSc, and thus to
I0.15, of the cusp in whichSn > SL,0.

Fig. 15 showsI0.15, calculated using eqs. (25)-(26), as a function oflc/δL,0 for four values ofα. At smaller lc
close to the width of the reaction zone for a givenα (see Fig. 13b),I0.15 essentially reflects only the values ofSn in
the immediate vicinity of the tip of the cusp, whereSn is close toS∗n. On the other hand, at largerlc, the surface
area of the planar flame region, in whichSn ≈ SL,0, is larger, and so this region represents a greater fractionof the
total surface area of the flame configuration shown in Fig. 12.As a result, the contribution of the planar flame starts
to dominate that of the cusp, which causesI0.15 → 1 as seen in Fig. 15. Note that at lowerα, the region in which
Sn > SL,0 extends progressively further from the cusp tip. In particular, atα = 1◦, I0.15 is substantially greater than
unity even atlc >> δL,0. At the same time, already atα = 4◦, I0.15 drops to.1.04 atlc ≈5δL,0 which shows thatSn

recovers its laminar value within a few laminar flame widths from the cusp tip.
These results show that the formation of a cusp due to the collision of planar flame sheets produces values ofI0.15

substantially larger than unity and comparable to those observed in the simulations presented here. As a result of a
higher local flame speed in a cusp, its contribution to the global turbulent burning speed is disproportionately large
compared to the fraction of the instantaneous flame surface area in it. A more complex flame configuration, consisting
of multiple planar flame sheets that approach each other and collide forming multiple cusps, can then be considered.
In this system, for instance, if the flame surface density is increased, flame sheets will get closer to each other causing
flame collisions to become more frequent and the resulting cusps to become more numerous. Consequently, the
fraction of the flame surface area contained in cusps will increase andI0.15 will grow, which is demonstrated by the
increase inI0.15 with decreasinglc.

This simplified model demonstrates the mechanism through which ST can produce an exaggerated response to the
increase inAT . Yet it does not take into account the full complexity of an actual turbulent flame. Such flame does
not consist of perfectly planar flame sheets that merge, but instead it is constantly wrinkled and folded on a variety
of scales (Fig. 11). As a result, cusps will form in a multitude of configurations. For instance, in addition to the
purely 2D situation considered here, there will also exist 3D flame collisions which will result in even higher local
flame speeds in the cusps and, thus, will have an even larger effect on the magnitude ofI0.15. The probability of the
formation of such more complex flame collisions, however, will rapidly decrease with the increase in their complexity
[3, 23]. Nevertheless, in order to predict a particular value of I0.15 which can be expected in the turbulent flow of a
specific intensity, it is necessary to understand the types of all cusps which can form, the local flame speed of each
type, its probability of formation, and, thus, the contribution of each type to the exaggerated response ofST . Such
detailed analysis is the subject for future studies.

6.4. Effect of cusps on the diffusion velocities in the turbulent flame

Changes in the local flame structure (Figs. 12 and 13) in cuspswill result in modified local diffusion velocities,
D|∇Y|. This is the direct consequence of focusing of the diffusive fluxes which alters the molecular and thermal
transport in regions of high flame curvature. It is, therefore, instructive to compare the distribution of the diffusion
velocities in the idealized cusps considered above and in the actual turbulent flame.

We calculated the surface-averaged normalized diffusion velocity,

VD(Y)
SL

=

∫

AY
D|∇Y|dA

AYSL
, (27)

for a set of discrete values ofY in simulation S3 and in the cusp formed at the low inclinationangleα = 1◦ shown in
the upper panel of Fig. 12. Here the diffusion coefficientD is given by eq. (7) and the integration is performed over
an isosurface of a givenY. In S3, the values ofVD(Y) change with time due to the fuel heating by turbulence. In order
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to take this effect into account, we normalized the instantaneousVD(Y) by the corresponding actual instantaneous
laminar flame speedSL, as was discussed in§ 2.2. The resulting distributions were subsequently time-averaged. In
the idealized cusp calculation,SL = SL,0 at all times, and the instantaneous flame structure shown in Fig. 12 represents
a steady state. The obtainedVD(Y)/SL for both calculations is shown in Fig. 16. We also show two distributions of
VD(Y) representing the exact planar laminar flame solutions constructed for two fuel temperatures, namelyT0 = 293
K and 320 K, which correspond to the average fuel temperatures at the beginning and at the end of S3. These were
also normalized by the correspondingSL.

Fig. 16 shows that the flame configuration in Fig. 12 (upper panel), which consists both of a cusp and the extended
planar flame regions, has diffusion velocities in the reaction zone. 10% lower than in the planar laminar flame. At
the same time, a similar decrease ofVD/SL in a laminar flame is produced as a result of fuel heating to 320K. On the
other hand, the time-averaged distribution ofVD/SL inside the turbulent flame is also similarly lower in comparison
with the base laminar case at fuel temperatureT0 = 293 K. This fact, along with the 1σ standard deviation of the
instantaneous values ofVD/SL shown as the shaded gray region, indicates that the observeddecrease of the diffusion
velocities in S3 is consistent with the combined effect of fuel heating and the formation of cusps.

6.5. Criterion for onset of the regime of flame evolution influenced by cusps
Properties of cusps discussed above allow us to determine when the evolution of a turbulent flame can be expected

to become affected by cusp formation, thereby, leading to values ofI0.15 substantially larger than unity. The results
presented in this paper show that such highI0.15 require a large number of cusps to exist or, in other words, the flame
must have large curvature∼ 1/δL over a significant fraction of its total surface. This means that the flame must be
tightly folded with a characteristic separation 1/ΣT comparable to the full flame widthlF , which is indeed the situation
observed in the simulations discussed here.

Consider now the two channels of cusp formation discussed in§ 6.1 and illustrated in Fig. 11. Nonlocal flame
collisions cannot create a tightly packed turbulent flame since, by definition, they fold the flame only on large scales
causing flame sheets to move toward each other. Large curvature forms only at the moments of collision after which
the large speed of cusp propagation,Uc, causes rapid annealing of the flame surface. Consequently,a tightly packed
flame can form only if local flame collisions are an efficient process capable of folding the flame on scales∼ δL not
only in isolated regions but consistently throughout the flame surface.

It was discussed in§ 6.2 (Fig. 14) thatUc, unlike S∗n, is much greater thanSL even at large flame inclination
angles, and, thus, it increases gradually with curvature. Therefore,Uc is the primary factor responsible for smoothing
the flame surface while it is being wrinkled by turbulence. Inparticular, as the turbulent motionsUλ shown in Fig. 11a
fold the flame thereby progressively increasing its curvature, they must overcome the straightening action of the
growingUc. The formation of a cusp, as well as its structure, are then determined by the balance betweenUλ andUc.

Next consider a section of an idealized curved flame front, schematically shown in Fig. 17, containing a cusp
formed through a local flame collision (Fig. 11a). The flame isperturbed with a wavelengthλc and an amplitudelc.
This type of structure was considered by Zel’dovich [41] as amodel of a flame formed under the action of the Landau-
Darrieus instability in order to analyze the stabilizing effect of cusps. The same structure, however, can emerge under
the action of any destabilizing process, e.g., the Rayleigh-Taylor instability or, in our case, turbulence.

In this case, the rate of decrease of the cusp amplitude is [41]

(dlc
dt

)

−
= −SL

( 1
sinα

+ 1
)

. (28)

The angleα and, thus, (dlc/dt)−, will change with the cusp amplitude. In order to relateα andlc, a parabolic shape of
the flame was assumed in [41], and eq. (28) can then be rewritten as

(dlc
dt

)

−
= −8SL

l2c
λ2

c
. (29)

The net rate of change oflc is determined by the balance of the stabilizing process described by eq. (29) and a
destabilizing process, namely

dlc
dt
= Ψ − 8SL

l2c
λ2

c
. (30)
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In the turbulent flow, flame perturbations can be assumed to grow linearly in time as they are being stretched by the
turbulent speedUλc characteristic of the scaleλc. This gives the growth rateΨ = Uλc. By settingdlc/dt = 0, the
limiting value oflc(λc) can be determined. It was shown by Khokhlov [23] in the context of Rayleigh-Taylor-unstable
flames that nonlinear flame stabilization due to cusp propagation can be expected to fail oncelc & λc. Therefore, by
settinglc = λc, Ψ = Uλc, anddlc/dt = 0 in eq. (30), the critical value of the turbulent velocity ona given scaleλc can
be found [23]

Uλc = 8SL. (31)

This is the value ofUλc that is needed to overcome the stabilizing effect of cusps and, thereby, to deform the flame on
scaleλc. This result was used to demonstrate that, in order for the flame to be unstable at a wavelengthλc under the
action of turbulent motions, the turbulent speed on that scale must be substantially larger thanSL [23].

This shows that given a specific turbulent cascade, the flame will be stabilized on scales smaller than some critical
wavelengthλcrit

c on which the condition in eq. (31) is satisfied. In order for the cusps to have a pronounced effect on
the flame evolution, the flame must be folded on scales comparable to the full flame widthlF . Therefore, by setting
λcrit

c = lF and using eq. (31), we find that the flame will be curved on scales∼ lF when turbulent velocity on that scale
becomes∼ 8SL. In a turbulent flow with the Kolmogorov energy spectrum, thecorresponding critical value of the
integral turbulent velocity then is

Ucrit
l ≈ 8SL

( l
lF

) 1/3

. (32)

This gives the critical values of the Karlovitz number,Kacrit , and the Damköhler number,Dacrit , written using their
traditional definitions [5]

Kacrit =
τF

τη
=

( lF
LG

) 1/2

= 8
3/2 ≈ 20,

Dacrit =
τT

τF
=

lSL

lFUl
=

1
8

( l
lF

) 2/3

.

(33)

HereτF = lF/SL is the characteristic flame time,τη is the Kolmogorov time,τT = l/Ul is the characteristic turbulent
time on the integral scale, andLG = l(SL/Ul)3 is the Gibson scale.

Fig. 18 presents a traditional combustion regime diagram [5]. The orange region shows the range of the regimes,
in which I0.15 is expected to be larger than unity, according to eq. (33). The solid red square corresponds to the
simulations discussed here. We also determined the time-averaged value ofI0.15 in a simulation similar to S2, but with
approximately half the turbulent intensity which, however, was still above theKacrit ≈ 20 line. In this calculation,
represented with the open red square in Fig. 18, we foundI0.15 ≈ 1.1, compared withI0.15 ≈ 1.14 found in simulation
S3 (Table 4). Details of this calculation will be presented in a separate paper.

Despite the simplicity of the cusp model used here, eqs. (32)-(33) provide a rather accurate criterion for the onset
of the regime of the turbulent flame evolution in which the contribution of cusps is expected to become important. In
particular, the decrease in the value ofI0.15 between the two turbulent intensities considered in Fig. 18suggests that
below theKacrit ≈ 20 line I0.15, on average, deviates from unity at most by a few percent.

6.6. Effect of different turbulent intensities and system sizes

For the given reaction-diffusion model and fuel properties, the only two free parameters in the system considered
here are the turbulent intensity and system size represented by the turbulent integral velocity,Ul , and scale,l. Con-
sequently, the question arises, how will the distributionsof ST/SL and, more importantly, ofI0.15 as a function of
A0.15/L2 shown in Figs. 6b and Fig. 8 vary with the change inl andUl?

The results presented here and in [11] demonstrated the following key property of the flame interaction with high-
speed turbulence. Turbulent motions are much more efficient at folding the flame with increasingly greater curvature
than at disrupting its internal structure. This creates tightly packed turbulent flames which, in regions of low curvature,
retain locally the laminar structure and velocity. Therefore, an increase inUl creates both larger flame surface area,
AT , and density,ΣT .

On the other hand,l does not affect ΣT . The analysis in§ 6.5 showed that flame folding on a given scale is
controlled only by the turbulent velocity on that scale rather than by the total range of scales present in the system.
Instead, a larger system size results in a wider turbulent flame and, thus, in larger values ofAT . This follows from the
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fact that, in the high-speed regime, the turbulent flame width, δT , is primarily determined byl (and, therefore, by the
driving scale,L) rather than byUl , as was discussed in [11] based on the comparison of the results of that work with
the results of Aspden et al. [9]. A similar conclusion was also reached by Peters [5] (cf. eq. (2.175) therein).

At the same time, a givenUl andl is not characterized by a singleST , AT , andΣT . Instead, a variety of different
flame configurations are realized in the course of flame evolution, as was seen above (cf. Fig. 6b). These configurations
have differentAT , which is the primary factor determining the distribution of ST . More importantly, however, at a
given AT , there are also different numbers and types of cusps present in the flame. This creates a scatter in the
distribution ofST/SL vs. AT/L2, which in the absence of cusps would lie on theST/SL = AT/L2 line. These cusps
are the result of the combined action of the two cusp-formation channels discussed in§ 6.1. Consequently, this scatter
reflects the dependence of the two types of flame collisions onAT andΣT .

The efficiency of local flame collisions (Fig. 11a) is independent ofeitherAT or ΣT , since this process of cusp
formation is controlled only by the intensity of turbulent motions which stretch and fold the flame at a certain point
of its surface. As a result, the probability of cusp formation per unit flame surface area in this process does not
increase withAT or ΣT . Consequently, if only local flame collisions were present in the system, than the fraction of
AT contained in cusps would grow proportionally to the increase in AT , and the resultingI0.15 would not change.

On the other hand, the efficiency of nonlocal flame collisions (Fig. 11b) does depend not only on Ul , but also
on AT andΣT . To show this, the following qualitative model can be used (see also [23]). In this process, cusps
are created due to collisions of flame sheets with very low curvature. Therefore, consider an idealized structure
consisting of planar flame sheets discussed in§ 6.3. If the flame surface density of this configuration isΣT , then
the average flame separation is 1/ΣT . Flame sheets will move toward each other with the speedSL + UT , whereUT

is some characteristic turbulent velocity responsible forthe advective transport of the flame. SinceUl is the largest
velocity of coherent turbulent motions, thenUT can be approximated withUl . Consequently, the flame sheets will
merge and annihilate in the timetc ∼ 1/(ΣT(SL + Ul)). The total number of collisions and, thus, the total number of
resulting cusps,Nc, will depend on the total surface area of the flame sheets times the frequency of their collisions, i.e.,
Nc ∝ AT/tc ∝ ATΣT (SL + Ul). SinceAT andΣT are well correlated (§ 3.3),AT can be viewed as simply proportional
to ΣT , which gives9 Nc ∝ (SL + Ul)A2

T ∝ (SL + Ul)Σ2
T . Therefore, the number of cusps formed per unit flame surface

area will be
Nc

AT
∝

(

SL + Ul

)

AT ∝
(

SL + Ul

)

ΣT . (34)

These considerations show that at a givenl andUl , the distribution of values ofI0.15 has two contributions: one due
to local flame collisions independent ofAT andΣT , and the other due to nonlocal flame collisions, which increases
with AT andΣT . In smaller systems and at lower turbulent intensities, or,equivalently, at lowerAT andΣT , the
first process is dominant. This can be seen in the distribution of I0.15 vs. A0.15/L2 in Fig. 8, which shows almost
no dependence onAT . Note, however, a weak increasing trend suggested by the least squares fit. In particular, the
lowest values ofI0.15 become progressively larger with increasingA0.15 approaching≈ 1.1 asA0.15/L2 → 5. While
the statistical significance of this trend must be confirmed through further studies, this trend would be indicative of
the contribution of nonlocal collisions. The analysis given above suggests that such dependence ofI0.15 on AT will
become pronounced in larger systems or at larger turbulent intensities.

The fact thatI0.15 must depend onAT also follows from a different argument. Consider first a limiting value of
ΣT . The fact that the flame is not an infinitely thin surface meansthat such a limit does exist. OnceΣT becomes large
enough so that all of the flame surface comes into contact withitself,ΣT cannot increase further. This maximum value
Σmax

T can be estimated by assuming that the minimum flame separation is equal to the full flame widthlF . Then10

Σmax
T ≡ Σmax

0.15 =
1
lF
. (35)

9This expression is very similar to the destruction term often used in the balance equation of the flame surface density (see [44] for a review of
a number of such models). This is also analogous to the rate ofcollisions of gas molecules, withΣT playing the role of number density and the
turbulent intensity playing the role of temperature in determining the speed with which constituents approach each other.

10Note thatΣmax
T is different fromΣmax typically used in combustion research and discussed in§ 3.2.
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Using the definition ofΣY given by eq. (14), the corresponding limiting value of the flame surface area then is

Amax
T

L2
≡

Amax
0.15

L2
= Σmax

T δT = C1
L
lF
= (C1C2)

l
lF
. (36)

Here,C1 = δT/L and it typically is≈ 2 − 4 based on the results of [11, 9]. TheC2 = L/l and in the case of the
Kolmogorov turbulenceC2 ≈ 4. In our caselF ≈ 2δL,0 (cf. Fig. 7 in [11]). Therefore, based on the values ofL andl
given in Table 3 for the system considered here,Σmax

T ≈ 1.5 mm−1 andAmax
T /L

2 ≈ 7− 8.
The situation when all of the flame surface is in contact with itself corresponds to the infinite local flame speed

and, thus, infiniteST . This is equivalent to the complete domination of the nonlocal process of cusp formation when
the flame sheets collide simply because they are very close toeach other and not as a result of the folding action of
turbulence. Therefore, asAT/L2 → Amax

T /L
2, bothST/SL → ∞ andI0.15 → ∞. On the other hand, asAT/L2 → 1,

ST/SL → 1 and, thus,I0.15 → 1. This shows thatI0.15 cannot be constant. Instead, it has to be a monotonically
increasing function ofAT , as suggested.

In summary, the following picture emerges. At a givenl, lower turbulent intensities cause the flame to be less
convolved and, thus, to develop less surface area. As a result, the overall distribution ofST/SL vs. AT/L2 would
shift toward smaller values ofAT/L2 and, thus,ST/SL. Furthermore, the efficiency of both local and nonlocal flame
collisions would decrease. As a result, cusps would become infrequent representing only a small fraction of the
total flame surface. Consequently, the flame almost everywhere would propagate locally with its laminar speed, thus
causing the scatter in the distribution ofST/SL to decrease and values ofST/SL to collapse onto theST/SL = AT/L2

line in the limit ofUl → 0. Note, however, that while atUl < Ucrit
l given in eq. (31) local flame collisions practically

cease to occur, individual cusps can still form through nonlocal collisions. Since these depend onAT , I0.15 would
approach unity with decreasingUl more slowly in larger systems that have greaterAT than in smaller systems.

At largerUl , the behavior would be opposite. Not only would the overall distribution ofST/SL vs. AT/L2 shift to
larger values ofAT/L2 andST/SL, but also the efficiency of both local and nonlocal flame collisions would increase,
causing a much larger scatter of the distribution. Furthermore, at high turbulent intensities, flame configurations with
very few cusps and, thus,I0.15 ≈ 1, would become increasingly less likely to occur. Therefore, largerUl will cause
not only a higher rate of burning due to the increase inAT , but it will also periodically lead to a substantially more
exaggerated response ofST to such increase inAT . Finally, dependence ofI0.15 on AT would be more pronounced
due to the increased contribution of nonlocal collisions and, at a givenUl , larger systems would tend to have higher
values ofI0.15.

7. Conclusions

This work continued the analysis of the set of three numerical simulations first presented in [11]. These calcu-
lations model the interaction of a premixed flame with high-speed, subsonic, homogeneous, isotropic turbulence in
an unconfined system, i.e., in the absence of walls and boundaries. The turbulent r.m.s. velocity,Urms, is≈35 times
larger than the laminar flame speed,SL. The resulting Damköhler number based on the turbulent integral scale and
velocity isDa = 0.05.

It was demonstrated in [11] that this system represents turbulent combustion in the thin reaction zone regime. Even
in the presence of such intense turbulence, the flame brush consists of the highly convolved flame with its reaction-
zone structure virtually identical to that of the planar laminar flame and with the preheat zone broadened by a factor
≈ 2. The fact that turbulence is unable to penetrate and disrupt the internal structure of the reaction zone suggested
that the flame must be propagating locally with the speedSL [11]. This raised the following question: is the turbulent
flame speed,ST , in the thin reaction zone regime completely determined by the increase in the flame surface area,AT ,
as it is the case in the wrinkled and corrugated flamelet regimes? Here we summarize the main findings of our study
of this issue.

Analysis of the area and density,AY andΣY, of the fuel mass-fraction isosurfaces showed that the flame, folded
inside the flame brush in the presence of high-speed turbulence, cannot be viewed as a thin uniform structure in which
all isosurfaces are parallel to each other. Different regions of the flame have quite different response to the action
of turbulence. In the higher-resolution calculations S2 and S3, bothAY andΣY, on average, increase monotonically
through the flame with increasingY, which leads to the distinctive inverted-S shape of the time-averaged distributions
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of AY andΣY. Consequently, isosurfaces of higherY are folded by turbulence on progressively smaller scales. This
causes substantially finer wrinkling of the flame surface on the fuel side than on the product side, as observed in [11].
Furthermore, in the reaction zone,AY grows due to both much tighter folding of isosurfaces and theincrease in the
overall width of the flame brush, with the first process being more dominant. On the other hand, in the preheat zone,
isosurfaces ofY are packed primarily on small scales without contributing to the increase ofδT .

These properties of the distributions ofAY andΣY showed that, in the thin reaction zone regime, the definitionof
the flame surface area must be revisited before the relation betweenAT andST can be considered. In particular, it must
be determined which value ofY fully and accurately characterizes the evolution and global properties of the turbulent
flame. To answer this question, we analyzed the correlation of AY with quantities that characterize both the energetics
and the global structure of the turbulent flame, namely its speed,ST , and width,δT . This analysis demonstrated that
global properties of the turbulent flame in the thin reactionzone regime are accurately represented by the structure
of the region of peak reaction rate. For the reaction-diffusion model used in this work, this corresponds toY ≈ 0.15.
Therefore, the isosurface of this value ofY must be viewed as the flame surface andAT = A0.15. Correspondingly, the
flame surface density isΣT = Σ0.15.

Large values ofΣT developed in the course of the system evolution, on one hand,and the absence of any broad-
ening of the reaction zone observed in [11], on the other, demonstrated the following important fact. High-intensity
turbulence is much more efficient at tightly packing the flame inside the flame brush than at disrupting and broadening
its internal structure (also see [5]).

The distribution ofST/SL as a function ofAT/L2 and, more specifically, the ratioI0.15 = (ST/SL)/(AT/L2) showed
that, in the thin reaction zone regime, the magnitude ofST is controlled primarily by the increase of the flame surface
area. In particular, on averageI0.15 ≈ 1.14. As a result, a variety of different flame configurations realized over
time, with bothAT andΣT varying by over a factor of≈ 3, causeST/SL also to vary over a broad range of values
≈1.6−5.5. Such significant changes in the burning rate demonstrate that, in order to properly characterize the turbulent
flame evolution in this regime, it is not sufficient to consider only the time-averagedST . Instead, the full PDF of the
instantaneous values ofST must be determined.

At the same time, the distribution ofST/SL exhibited another important characteristic. In the courseof the system
evolution,ST/SL varies from within only a few percent ofAT/L2 to as high as 30% larger thanAT/L2. This led to the
following key conclusion of this work. In the thin reaction zone regime given a sufficiently high turbulent intensity,
ST periodically exhibits a substantially exaggerated response to the increase inAT . Such accelerated burning in the
turbulent flame means that an additional mechanism must augment the effect of the increase of the flame surface area.

Our analysis showed that tightly packed flame configurations, produced by high-speed turbulence, have the aver-
age flame separation of only a few full flame widths. This results in frequent flame collisions that lead to the formation
of regions of high flame curvature& 1/δL, or “cusps.” The resulting significant focusing of the thermal flux over an
extended region of the flame surface can significantly increase the local burning speed,Sn, in the cusp over its laminar
value,SL. These large values ofSn cause the contribution of cusps to the totalST to be disproportionately large com-
pared to the flame surface area they contain. This provides a natural mechanism to accelerate burning in the turbulent
flame above what can be attributed to the increase inAT , even in reactive mixtures characterized byLe = 1. The
increase ofSn in cusps is inherently local, and it does not require the flameto be broadened and its speed increased
by small-scale turbulent transport, in agreement with the results of [11].

Therefore, our results indicate that cusp formation is a crucial process in the turbulent flame evolution responsible
for controlling ST . It is capable of accelerating burning in addition to the twoprocesses originally suggested by
Damköhler [1], namely the increase ofAT and the enhancement of the local flame speed by turbulence. Furthermore,
both the criteria given by eqs. (31)-(33) and the results of numerical simulations show that effects of cusps become
pronounced well within the thin reaction zone regime and, inparticular, atKacrit & 20 (Fig. 18). Above this critical
value ofKa, increase ofST overSL, on average, exceeds by& 10% the corresponding increase ofAT . This shows
that a substantially accelerated turbulent burning can arise due to cusps at much lower turbulent intensities than would
be necessary to disrupt the flame and increase its local speedby small-scale turbulence.

AboveKacrit (Fig. 18), the flame evolution likely remains substantiallyaffected by cusp formation at all turbulent
intensities, as long as there is folding of the flame by large-scale motions. This is the result of the fact that turbulence
is more efficient at packing the flame than at broadening it. In particular, at high enough values ofUl , turbulence
will eventually break the internal flame structure, which will increaseSn. This will, in turn, increase the right-hand
side of eq. (31), thereby, enhancing the stabilizing effect of cusps. On the other hand, the flame width will also grow,
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increasing the critical flame separation necessary for the onset of the regime influenced by cusp formation. SinceSn is
determined by small-scale turbulence while flame folding isgoverned by the faster large-scale motions, it is unlikely
thatSn can grow fast enough to compensate for the increase in bothlF and the turbulent speeds which fold the flame.
Consequently, at higherUl , i.e., even in the broken reaction zone regime, cusps most likely continue to provide a
significant enhancement ofST . This issue, however, requires further investigation in future studies.

The effect of flame collisions on the turbulent flame speed suggests that, even at high turbulent intensities,ST does
not become independent of the laminar flame speed. Analysis given in§ 6.5 and, in particular, eqs. (31)- (32), showed
that flame folding by turbulence, and thus the efficiency of cusp formation, is controlled bySL. For instance, at the
sameUl , the reactive mixture with higherSL will develop a less convolved flame with fewer cusps than the one with
lowerSL. Consequently, the exaggerated response ofST to the increase ofAT due to cusps will vary withSL.

The results presented in this work show that for a large rangeof turbulent intensities and system sizes, knowledge
of AT is not sufficient to predict the magnitude ofST , even if the reaction-zone structure remains unaffected by
turbulence. For instance, in the regime considered here, using AT as a guide would result in errors as high as 30%.
Such errors are quite substantial, given that the flow evolution is typically very sensitive to the rate of energy release.
Therefore, it is particularly important to account for the effects of cusps in subgrid-scale models that primarily focus
on determining the evolution ofAT (e.g., [23]). Furthermore, when constructing such modifiedsubgrid-scale models,
flame propagation can no longer be viewed as a local process. In particular,Sn at each point of the flame surface is no
longer determined only by the local thermodynamic state of the flow or by turbulent motions on scalesλ < δL. Instead,
in the presence of cusps,Sn is also controlled by long-range velocity correlations, which produce flame collisions and
can span the full size of the system.

The formation of cusps and the resulting rapid flame propagation in certain regions are a crucial part of the
turbulent flame-brush evolution in the high-speed regime. Thus, properly capturing this regime in numerical models
requires the domain size to be larger than the integral scalein order to accommodate the folding of the flame by
turbulence. Making the domain smaller thanl would significantly hamper this process, while making the domain
smaller than∼δL would completely eliminate it.

The increase ofSn in cusps is discussed here forLe = 1. It is well known, however, that whenLe , 1, Sn varies
with the flame curvature, even when it is≪ 1/δL [3]. Therefore, due to the large curvature in cusps, any imbalance
between thermal and diffusion fluxes can significantly exacerbate or suppress the enhancement ofSn, depending on
the value ofLe. Therefore, the role and properties of cusps in non-equidiffusive reactive mixtures must be investigated
in future studies. Furthermore, it is important to extend the results presented in this work by considering the effects
of detailed chemistry, in particular, to address the role offlame quenching and re-ignition at such high turbulent
intensities that are necessary for efficient cusp formation.

Finally, two possibilities exist for the flame evolution in the thin reaction zone regime. If the turbulent intensity is
not too high, an equilibrium is established between flame-surface creation by turbulence and its rapid destruction in
cusps. This results in the turbulent flame propagating in a steady state, which is the situation observed here. On the
other hand, if the turbulent intensity continues to rise, eventuallyΣT andAT can approach their limiting values given
by eqs. (35) -(36). In this case, bothST/SL andST/AT can become arbitrarily large, as was discussed in§ 6.6. Such
singular behavior suggests that in reality, unless turbulence substantially alters the flame properties, the steady state
must cease to exist and the system must undergo a qualitativetransformation in order to accommodate the rise inST

or, equivalently, in the rate of energy release per unit volume. Such qualitative change may indicate the transition from
the deflagration to a detonation. Detailed discussion of this nonsteady regime will be presented in a separate paper.
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Table 1. Nomenclature

AY ≡ A(Y) surface area of theY isosurface
AL surface area of laminar flame
AT ≡ A0.15 surface area of turbulent flame
B pre-exponential factor
Cp specific heat at constant pressure
D molecular diffusion coefficient (eq. 7)
D0 molecular diffusion constant
DT turbulent diffusion coefficient (eq. 2)
Da Damköhler number, (l/Ul)/(lF/SL,0)
I stretch factor (eq. 1)
IY ratio of ST/SL to AY/L2 (eq. 16)
Ka Karlovitz number, (lF/l)

1/2(Ul/SL)
3/2

Kacrit critical Karlovitz number for cusp formation (eq. 33)
l integral scale
lc characteristic cusp length
lF full width of laminar flame,≈2δL,0

L domain width, energy-injection scale
LG Gibson scale,l(SL,0/Ul)3

Le Lewis number,K/D
M molecular weight
MaF Mach number in fuel,U(γP0/ρ0)−

1/2

MaP Mach number in product,U(γP0/ρP,0)−
1/2

n Temperature exponent
P0 initial fuel pressure
q chemical energy release
Q activation energy
SL actual instantaneous laminar flame speed
SL,0 initial laminar flame speed
Sn local flame burning speed
S∗n maximum local burning speed in the cusp
ST turbulent flame speed
t time
tign time of ignition
ttotal total simulation time fromtign

T0 initial fuel temperature
TP,0 initial post-flame temperature
u = (ux, uy,uz) flow velocity
U turbulent velocity at scaleL
Uc speed of cusp propagation (eq. 23)
Ul integral velocity
Ucrit

l critical value ofUl for cusp formation (eq. 32)
Urms turbulent r.m.s. velocity
Uδ turbulent velocity at scaleδL,0

VD diffusion velocity
x = (x, y, z) spatial coordinate in the domain
Y fuel mass fraction
Ẏ reaction rate (eq. 8)
z0,min left z-boundary of the flame brush (eq. 10)
z1,max right z-boundary of the flame brush (eq. 10)
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Table 1 (cont’d)

zT,0 initial flame position alongz-axis

α inclination angle between planar flame sheets
γ adiabatic index
δL actual instantaneous thermal width of laminar flame
δL,0 initial thermal width of laminar flame
δT turbulent flame width
∆x cell size
∆tc time lag of maximum cross-correlation
η Kolmogorov scale
ε energy-injection rate
κ0 thermal conduction constant
K thermal conduction coefficient (eq. 7)
ρ0 initial fuel density
ρP,0 initial post-flame density
ΣY ≡ Σ(Y) surface density of theY isosurface (eq. 14)
ΣT ≡ Σ0.15 surface density of turbulent flame
τed eddy turnover time,L/U

(. . .) time averaging

Table 2. Input model parameters and resulting computed laminar flame properties

Input
T0 293 K
P0 1.01× 106 erg/cm3

ρ0 8.73× 10−4 g/cm3

γ 1.17
M 21 g/mol
B 6.85× 1012 cm3/(g s)
Q 46.37 RT0

q 43.28 RT0 /M
κ0 2.9× 10−5 g/(s cm Kn)
D0 2.9× 10−5 g/(s cm Kn)
n 0.7

Output
TP,0 2135 K
ρP,0 1.2× 10−4 g/cm3

δL,0 0.032 cm
SL,0 302 cm/s
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Table 3. Parameters of simulationsa

S1 S2 S3

Mesh 64× 64× 1024 128× 128× 2048 256× 256× 4096
L 0.259 cm= 8δL,0

∆x 4.05× 10−3 cm 2.02× 10−3 cm 1.01× 10−3 cm
δL,0/∆x 8 16 32
zT,0 1.95 cm= 7.52L

ε 1.26× 109 erg/(cm3 s)
Uδ 4.53× 103 cm/s= 15SL,0

U 9.07× 103 cm/s= 30SL,0

Urms 1.04× 104 cm/s= 34.48SL,0

Ul 5.60× 103 cm/s= 18.54SL,0

l 6.04× 10−2 cm= 1.87δL,0

τed 2.86× 10−5 s
tign 3.0τed 3.0τed 2.0τed

ttotal 16.0τed

Da 0.05
LG 9.47× 10−6 cm= 2.96× 10−4δL,0

MaF 0.25
MaP 0.09

a Parameters common to all simulations are shown only once in S2 column.

Table 4. Time-averaged properties of the turbulent flame brusha

δT/δL O(δT/δL) ST/SL O(ST/SL) A0.15/L2 O(A0.15/L2) Σ0.15, mm−1 O(Σ0.15) I0.15 O(I0.15)

S1 20.03 5.19 3.91 0.74 1.31
S2 17.39 2.21 3.91 2.19 3.23 2.84 0.67 4.07 1.20 1.50
S3 16.66 3.55 3.12 0.67 1.14

a Time-averaging for all variables is performed over the timeinterval [2τed − 16τed].
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Figure 1 Instantaneous kinetic energy spectral density forsimulations S1 (black), S2 (red), and S3 (green) at a time
immediately prior to ignition. Shaded regions illustrate scales associated with thermal widthδL,0 and full width 2δL,0
of the laminar flame. Vertical dashed lines show wavenumberscorresponding to the Taylor microscales in the product,
λP, and fuel,λF , as well as the Kolmogorov scale in the product,ηP, based on the value of the viscosity coefficient
corresponding to theS c= Pr = 1 condition. The wavenumber corresponding to the Kolmogorov scale in the fuel,
ηF = 1.18× 10−3 cm, is located outside the range of the graph. (Reproduced from [11].)

Figure 2 Isosurfaces ofY in simulation S2 att = 13τed (cf. Fig.3, middle row, left panel in [11]). Isosurface values are
0.05 (red), 0.6 (green), 0.95 (blue). Red and green isosurfaces bound the reaction zone of the flame. Green and blue
isosurfaces bound the preheat zone. Thez0,min andz1,max mark the flame-brush bounds. Thez0,max andz1,min indicate,
respectively, the maximum extents of product and fuel penetration into the flame brush (see Appendix A for further
discussion ofz0,max andz1,min). (Reproduced from [11].)
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Figure 3 (a) Evolution of the normalized turbulent flame width δT/δL. Note that domain widthL = 8δL,0 ≈ 8δL
indicated with the horizontal dashed line. (b) Evolution ofthe normalized turbulent flame speedST/SL. In both
panels: black lines correspond to simulation S1, red to S2, and green to S3. (cf. Fig. 4 in [11].)
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Figure 4 Evolution of the normalized flame surface area (a)A0.01/L2 and (b)A0.99/L2. Evolution of the flame surface
density (c)Σ0.01 and (d)Σ0.99. (e) Time-averaged normalized isosurface areaAY/L2. (f) Time-averaged isosurface
densityΣY. In panels (e) and (f) time averaging is performed over the time interval [2τed − 16τed], circles represent
calculated values and solid lines are the Akima spline fits. Shaded gray region shows the distribution of the reaction
rate,Ẏ, in the exact laminar flame solution normalized by its peak value Ẏmax = 9.5× 104 s−1. In all panels: black
corresponds to simulation S1, red to S2, and green to S3.
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Figure 5 Correlation betweenΣY andAY/L2 in simulation S3 for three values ofY. Graphs exclude data from the time
interval [0− 2τed] during which the turbulent flame develops its equilibrium state. Dashed lines show time-averaged
values ofΣY andAY/L2. Solid lines show the least squares fit with its slope given ineach panel.
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Figure 6 Correlation betweenAY/L2 andST/SL in simulation S3. AY is considered for three values ofY: (a, b)
Y = 0.15, (c, d)Y = 0.5, and (e, f)Y = 0.95. In panels (a), (c), and (e)AY/L2 is shifted in time to the right by the time
lag∆tc shown in each panel. Graphs in panels (b), (d), and (f) are constructed based on the data shown, respectively,
in panels (a), (c), and (e) excluding the time [0−2τed] during which the turbulent flame develops its equilibrium state.
In panel (b) each data point is colored according to the corresponding value ofΣ0.15 with the color scale given in units
mm−1 (cf. Fig. 5a). In panels (b), (d), and (f) dashed lines show time-averaged values ofAY/L2 andST/SL, solid lines
show the least squares fit with its slope given in each panel, and dash-dot lines correspond toST/SL = AY/L2. Shaded
gray regions in panels (a)-(e) illustrate the exaggerated response ofST to the increase ofAY.
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Figure 7 Correlation betweenAY/L2 andδT/L in simulation S3 for three values ofY. Graphs exclude data from the
time interval [0− 2τed] during which the turbulent flame develops its equilibrium state. Dashed lines show time-
averaged values ofAY/L2 andδT/L. Solid lines show the least squares fit with its slope given ineach panel. Each
data point is colored according to the corresponding value of ΣY with the common color scale in unitsmm−1 shown in
panel (a) (cf. Fig. 5).
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Figure 8 Instantaneous values ofI0.15 as a function ofA0.15/L2 in simulation S3. Graph is constructed from data shown
in Fig. 6b. Each data point is colored according to the corresponding value ofΣ0.15 with the color scale given in units
mm−1. Dashed lines show time-averaged values. The solid line gives the least squares fit with its slope given in the
panel.
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Figure 9 Instantaneous values ofI0.15 in simulation S3 as a function of the volume-averaged normalizedx-component
of the kinetic energy inside the flame brush and in the fuel immediately ahead of it. The solid line shows the least
squares fit with its slope given in the panel. See text for further details.
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Figure 10 Flame collision and the formation of cusps in the turbulent flame. Shown is the flame-brush structure based
on the isovolume ofY in simulation S3. Bounding isosurfaces representY = 0.05 andY = 0.95 and the flame brush
is shown from the product side. Upper panel corresponds to the timet = 11.86τed, while the middle and lower panels
show the flame structure, respectively, 0.1τed = 3 µs and 0.2τed = 6 µs later. The thin black line, corresponding to
Y = 0.6, marks the boundary between the preheat and reaction zones. The thin white line, corresponding toY = 0.2,
shows the location of the peak reaction rate. Regions A, B, and C show the three main stages of the flame collision
and the formation of a cusp discussed in§ 6.1. Note also two elongated regions of flame collision forming near the
upper face of the domain.

35



Uc

Uλ

Uλ

Uc Uc

(a) (b)

Uλ

Figure 11 Schematic of the two main channels of cusp formation. (a)Local flame collisions.Turbulent motions with
velocityUλ on the scaleλ fold the flame, gradually increasing its surface curvature at a specific point until it becomes
∼ 1/δL. (b) Nonlocal flame collisions. The flame is folded by turbulent motions on a larger scale. The curvature of
the flame surface remains small at all points until the collision of the two flame sheets causes an abrupt formation
of two cusps. Resulting cusps propagate in both cases with the phase velocityUc, which depends on the local flame
curvature. See text for further details.

Figure 12 Structure of a cusp formed by the collision of two planar flame sheets. Shown is the distribution ofY for the
flame inclination angleα = 1◦ (upper panel) andα = 4◦ (lower panel). Scale of the panel axes is given in units ofδL,0.
Away from the cusp tip, the flame propagates in the direction normal to its surface with the laminar flame speed,SL,0,
causing the tip to move to the right with the speedUc. Also shown is the variable length,lc, of the collision region (see
text). Thin black line marks the boundary between the reaction and preheat zones, while the thin white line indicates
the region of peak reaction rate. Note the substantial broadening of the flame, and thus the reaction zone, near the tip
of the cusp atα = 1◦ compared toα = 4◦ (cf. Fig. 10).
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Figure 13 Structure of a cusp formed by the collision of two planar flame sheets for four flame inclination angles,
α. Shown are distributions of (a)Y andT, as well as (b) the reaction rate,Ẏ, along the symmetry line of the cusp
(cf. Fig. 12). Dashed lines in both panels indicate the exactplanar laminar flame solution. Profiles ofT andẎ are
normalized by their respective maximum values in the exact laminar solution, i.e.,TP,0 (see Table 2) anḋYmax =

9.5× 104 s−1.
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Figure 14 (a) Dependence of the normalized speed of cusp propagation,Uc/SL,0, on the flame inclination angle,α.
Solid line corresponds to the analytic expression given in eq. (23), red circles show the computed values. Horizontal
dashed line indicates sound speed in cold fuel. (b) Dependence of the maximum normalized local flame speed in the
cusp,S∗n/SL,0, given by eq. (24), onα. Red circles show the computed values, solid line is the Akima spline fit.
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Figure 15 Dependence ofI0.15, given by eq. (26), on the normalized length of the flame-collision region,lc/δL,0, for
four values ofα. The shaded gray area indicates the full laminar flame widthlF ≈ 2δL,0. See text for further details.
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Figure 16 Time-averaged distributions of the normalized diffusion velocity in simulation S3 (black line) and in the
idealized 2D cusp atα = 1◦ shown in the upper panel of Fig. 12 (green line). Circles are calculated values, solid lines
are the Akima spline fits. The shaded gray region is the 1σ standard deviation of the instantaneous values ofVD/SL

in S3. Dashed red lines are the exact laminar flame solutions corresponding to fuel temperaturesT0 = 293 K (upper
line) and 320 K (lower line). The shaded orange region shows the distribution of the reaction rate,Ẏ, in the exact
laminar flame solution (fuel temperatureT0) normalized by its peak valuėYmax = 9.5× 104 s−1. See text for further
details.
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Figure 17 Illustration of the idealized perturbed flame stabilized by the propagation of a cusp with the speedUc (cf.
Figs. 11a and 12).
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Figure 18 Combustion regime diagram according to [5]. The orange region above theKacrit ≈ 20 line shows, ac-
cording to the criterion discussed in§ 6.5, the range of the regimes in which the formation of cusps is expected to
substantially affect the turbulent flame speed. The solid red square corresponds to the simulation S3 presented in
this work that givesI0.15 ≈ 1.14. The open red square shows the regime with one half the turbulent intensity in
which the value ofI0.15 ≈ 1.1 was determined. Flamelets are typically believed to existin the regimes below the
Kaδ = Ka/100 = 1 line [5]. The traditional form of the diagram was also modified by adding the lineMaF = 1
indicating the region of supersonic turbulence in the cold H2-air fuel under the atmospheric conditions. See text for
further details.
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Appendix A. Definition of the flame surface density

In the definition ofΣY, given in eq. (14), the isosurface area,AY, was normalized by the total volume of the flame
brush,δTL2. Individual isosurfaces, however, do not occupy all of thisvolume. For instance, this is the case for
isosurfaces ofY = 0.05 andY = 0.95, which are used to specifyδT in eqs. (9)-(10), simply because, by definition,
they are separated at least by the full flame width,lF , or a larger distance if the flame becomes broadened. In our case,
lF ≈ 2δL (see Fig. 7 in [11]) is a substantial fraction ofδT . Consider Fig. 2. It can be seen that neither theY = 0.05,
nor theY = 0.95 isosurface extend over the full width of the flame brush, and they indeed occupy a smaller volume.

In order to consider this more quantitatively, we definez0,max andz1,min by analogy withz0,min andz1,max (eq. 10),

z0,max= min(z) : Y(x, y, z) > 0.05∀ (x, y, z> z0,max),
z1,min = max(z) : Y(x, y, z) < 0.95∀ (x, y, z< z1,min).

(A.1)

In other words,z0,max is thez-coordinate of the rightmost cell with pure product, whilez1,min, respectively, is thez-
coordinate of the leftmost cell with pure fuel. Thereby, they effectively measure the furthest extent of product and fuel
penetration into the flame brush. Given the definitions ofz0,min andz1,max (eq. 10),z0,min andz0,max bound the volume
confining theY = 0.05 isosurface, whilez1,min andz1,max bound theY = 0.95 isosurface. Ifz1,min < z0,max, these two
variables bound the region of macroscopic mixing of productand fuel in the flame brush, i.e., the region in which both
pure fuel and pure product can be found. On the other hand, valuesz0,max ≤ z1,min exist only in a weakly wrinkled
(nearly planar) flame. Fig. 2 provides the illustration of all four of these quantities.

Next, we define the position of the turbulent flame brush as

zT =
z0,min+ z1,max

2
. (A.2)

Modified z̃0,max andz̃1,min are then defined as offsets ofz0,max andz1,min with respect tozT normalized byδT , namely

z̃0,max=
z0,max− zT

δT
, z̃1,min =

z1,min− zT

δT
. (A.3)

Thus, z̃0,max and z̃1,min are the relative measure of the extent to which pure fuel and pure product penetrate into the
flame brush. It follows from the definition (A.3), that both quantities take on values in the interval [−0.5, 0.5]. For
example, in a planar laminar flame, they are constant with ˜z0,max = −0.5, z̃1,min = 0.5. In the turbulent flame brush,
z̃0,max= z̃1,min = 0 would indicate that both fuel and product reach the midpoint of the flame brush, they are confined to
the left and right halves of the brush, and there is no macroscopic mixing of fuel and product. This would correspond
to a weakly wrinkled flame. If ˜z0,max ≈ 0.5 andz̃1,min ≈ −0.5, then both pure product and pure fuel can be found
throughout the entire volume of the flame brush.

Fig. B.19 shows the evolution of ˜z0,maxandz̃1,min for simulations S1-S3. In all cases, both parameters exhibit fairly
similar behavior oscillating around zero. As the system evolves, it undergoes recurring transitions between periods of
enhanced fuel-product mixing and episodes of their near complete separation when the turbulent flame becomes more
planar. The correlation between these quantities andST is less prominent compared, for instance, with that between
AY andST , although it is possible to associate some peaks and troughswith the corresponding changes inST .

It follows from Fig. B.19 that throughout the course of the simulation, both theY = 0.05 andY = 0.95 isosurfaces
indeed occupy regions smaller than the full flame-brush volume. This is also the case for other isosurfaces (cf. Fig. 2).
Consequently, an argument can be made that when calculatingΣY, normalization should be performed not over the
full volume of the flame brush, but rather over the respectivevolume bounding a given isosurface. For instance,
for Y = 0.05, this volume is (z0,max − z0,min)L2 = (z̃0,max + 0.5)δTL2, which would introduce an additional factor
1/(z̃0,max+ 0.5) in eq. (14). Such definition ofΣY would be a more accurate measure of how tightly a given isosurface
is folded. Fig. B.19 shows that, on average, ˜z0,max≈ 0 and, thus, theY = 0.05 isosurface is confined to about half of the
total volume of the flame brush. Therefore, such modified definition would result in approximately twice higher values
of ΣY. Ultimately, however, we are interested in determining howthe overall flame, rather than individual isosurfaces,
is folded inside the flame brush since only the flame as a whole has actual physical significance. Consequently, the
uniform normalization over the total volume occupied by theflame appears to be a more physically grounded choice.

Further motivation for our choice of normalization in the definition (14) ofΣY comes when we consider how ˜z0,max
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andz̃1,min would change for larger system sizes. Since theY = 0.05 andY = 0.95 isosurfaces are always separated at
least by the full width of the flame,lF , then

z1,max− z0,max& lF , z1,min − z0,min & lF . (A.4)

Using eqs. (9), (A.2), and (A.3), and the fact that in our system lF ≈ 2δL, inequalities (A.4) can be transformed into
the following conditions which must be satisfied at each moment in time,

z̃0,max. 0.5−
2δL
δT
, z̃1,min & −0.5+

2δL
δT
. (A.5)

Horizontal dashed lines in Fig. B.19 show the average limiting z̃0,max andz̃1,min based on the values ofδT/δL listed in
Table 4 for each simulation. In particular, ˜z0,max must be.0.4 while z̃1,min must be&−0.4, which closely agrees with
the data shown in Fig. B.19.

It was discussed in§ 6.6 thatδT increases with the turbulent integral scale, or, equivalently, with the system
size and energy injection scale [11, 5]. It then follows fromeq. (A.5) that asδT/δL → ∞, then limiting values
of z̃0,max → 0.5 andz̃1,min → −0.5. Therefore, in larger systems, asδT becomes large in comparison withδL, the
volume bounding each isosurface becomes well approximatedby the total volume of the flame brush. Consequently,
in the limit of large values ofδT , the uniform normalization for all values ofY in eq. (14) becomes equivalent to the
normalization by the actual volume bounding a given isosurface.

Appendix B. Induction time for the planar laminar flame

Fig. B.20 shows the distribution of induction timesτind, calculated using the procedure described in§ 4.1, through-
out the planar laminar flame. The solid red line corresponds to the fuel temperatureT0 = 293 K and densityρ0 (see
Table 2), while the dashed red line was obtained for the higher fuel temperature 320 K and the same density. The
second temperature reflects the effect of fuel heating by turbulence in the course of the simulation (§ 2.2).

For comparison, we also show the adiabatic induction time,τaind, calculated using eq. (20) based on the exact
planar laminar flame solutions. Solid and dashed line correspond, respectively, to the same fuel temperatures as for
τind. Overall, throughout the reaction zone, i.e., forY = 0.2 − 0.6, τind andτaind differ by less than a factor of≈ 2.
Moreover, near the peak reaction rate, i.e., atY ≈ 0.2, and at the boundary between the reaction and preheat zones,
i.e., atY ≈ 0.55,τind andτaind become virtually equal. In the preheat zone, however, they begin to diverge substantially.
This is to be expected, sinceτaind considers only self-heating of a fluid element by chemical reactions and neglects the
diffusive transport of heat, which is dominant in the preheat zone.

Despite the reasonable agreement in the reaction zone betweenτind andτaind, τaind should not be viewed as a model
of τind, but rather as a useful approximation. In particular, Fig. B.20 shows thatτaind does not capture the correct shape
of the distribution ofτind. Theτind increases more slowly at largerY thanτaind since slower heating of a fluid element
by chemical reactions is partially compensated by the larger influx of heat due to the thermal conduction. Sinceτaind
does not account for this, its rate of growth withY is larger in the outer regions of the reaction zone. At the same time,
since energy balance of a fluid element in the reaction zone isstill dominated by self-heating rather than by thermal
transport,τaind remains close to the actual value of the induction time givenby τind.

We also show in Fig. B.20 the characteristic reaction time,τreac, defined based on the reaction rate (eq. 8) and
neglecting the change in the fuel concentration,

τreac(Y′) =
1
ρ′B

exp
( Q
RT′

)

. (B.1)

Similarly toτaind, T′ andρ′ for a givenY′ are determined from the exact planar laminar flame solutionscorresponding
to the fuel temperaturesT0 = 293 K (solid line) and 320 K (dashed line) and densityρ0. Unlikeτaind, which is typically
applicable in the context of an autoignition process, this quantity is often used to approximate the induction time in
the flame. Nonetheless, for allY > 0.15,τreac provides a less accurate approximation ofτind thanτaind.

Finally, blue circles show the correlation time lags∆tc calculated in§ 4.1. There is close agreement between∆tc
and bothτind andτaind. Furthermore, when fuel heating is taken into account (dashed lines), all three quantities become
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Figure B.19 Evolution of the normalized maximum extents of product and fuel penetration into the flame brush ˜z0,max

andz̃1,min (see Appendix A for the definition and Fig. 2 for the illustration) for simulations S1 (a), S2 (b), and S3 (c).
The z̃0,max is shown with red line, ˜z1,min – with blue line. Shaded regions mark the extent of macroscopic mixing of
pure fuel and product inside the flame brush. Horizontal dashed lines show the average limiting values of ˜z0,max and
z̃1,min given by the condition (A.5) and calculated using the valuesof δT/δL listed in Table 4.

even closer.
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Figure B.20 Distributions of the actual induction times,τind, adiabatic induction times,τaind, and the characteristic
reaction times,τreac, in the planar laminar flame. Also are shown the correlation time lags∆tc (cf. Fig. 6). Red
circles show the calculated values ofτind, red lines are the Akima spline fits. Green and black lines represent eqs. (20)
and (B.1). Solid lines correspond to the fuel temperatureT0 = 293 K, dashed lines to 320 K. Shaded gray region
shows the distribution of the reaction rate,Ẏ, in the exact laminar flame solution normalized by its peak value Ẏmax=

9.5× 104 s−1. The vertical dashed line indicates the region of peak reaction rate. The horizontal dashed line indicates
equality between the induction time and the large-scale eddy turnover time,τed, during which turbulence completely
reorganizes the turbulent flame structure.
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