arXiv.org > astro-ph > arXiv:1107.3872

Astrophysics > Solar and Stellar Astrophysics

Search or Article-id

(Help | Advan

All papers

- PDF
- Other formats

Current browse cont astro-ph.SR

new | recent | 1107

astro-ph

References & Citation

- **INSPIRE HEP**
- NASA ADS

Download:

- PostScript

< prev | next >

Change to browse b

astro-ph.IM

- (refers to | cited by)

Bookmark(what is this?)

Comments: 5 pages, 3 figures Solar and Stellar Astrophysics (astro-ph.SR); Instrumentation and Methods for Subjects: Astrophysics (astro-ph.IM)

(Submitted on 20 Jul 2011)

Cite as: arXiv:1107.3872 [astro-ph.SR]

(or arXiv:1107.3872v1 [astro-ph.SR] for this version)

A dim candidate companion to ¿Cephei

Dimitri Mawet, Bertrand Mennesson, Eugene Serabyn, Karl Stapelfeldt, Olivier Absil

Using a vector vortex coronagraph behind the 1.5-m well-corrected subaperture (WCS) at Palomar, we detected a second object very close to \epsilon Cephei, a \delta Scuti F0 IV star. The candidate

companion, ~50 times fainter than \epsilon Cephei, if physically associated, is a late-type K or early

smallest angle detection ever realized with a coronagraph in terms of \lambda/D units. The projected separation of the putative companion is ~8.6 AU, most likely on a highly eccentric orbit. The recently

M star, and lies at an angular separation of 330 mas, or 1.1 \lambda/D for the WCS, making it the

detected near-infrared excess is thus likely not due to hot dust. Moreover, we also show that the

previously reported IRAS 60 \mu m excess was due to source confusion on the galactic plane.

Submission history

From: Dimitri Mawet [view email]

[v1] Wed, 20 Jul 2011 01:38:19 GMT (375kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.