Scientific Research

Search Keywords, Title, Author, ISBN, ISSN

 Open special issues Open special issues Published Special issues Published Special issues Special issues Guidelin Special issues Guidelin Special issues Guidelin Special issues Guidelin Most popular papers in IJG About IJG News Frequently Asked Questions Recommend to Peers Recommend to Peers Recommend to Library Contact Us Contact Us Downloads: 165,284 Visits: 394,263 Sponsors, Associates Links >> 	Home Journals	Books	Conferences	News	About Us	s Job	
 JG- Vol.4 No.1, January 2013 JG- Vol.4 No.1, January 2013 JG- Vol.4 No.1, January 2013 Special I ssues Guideling (JG Subscription) Special I ssues Guideling (JG Subscription) Most popular papers in IJG (About IJG News) Frequently Asked Questions Recommend to Peers Recommend to Peers Recommend to Library Contact Us Downloads: 165,284 Visits: 394,263 Sponsors, Associates Links >> 	Home > Journal > Earth & Environmental Sciences > IJG					Open Special Issues	
PERDIACCESS On " Voice of Sea" Generation Mechanism PDF (Size:671KB) PP. 116-128 DOI: 10.4236/ijg.2013.41012 UG Subscription Nuthor(s) Most popular papers in IJG Nuthor(s) About IJG News Restract Frequently Asked Questions hysical model of self-sustained infrasonic air oscillations related to interaction of fresh gale with choppy Frequently Asked Questions Recommend to Peers Recommend to Peers rests is shown to be of weaker impact on oscillations in far field. For wind velocity, while air self-sustained to Library Contact Us Socialitions requency decrease and oscillation energy losses increase with wind velocity cubed. Downloads: 165,284 visits: 394,263 hile cavity air oscillation in atmosphere is expected to increase with wind velocity cubed. Sponsors, Associates Links >> Links >>	Indexing View Papers Aims & Scope Editorial Board Guideline Article Processing Charges				Published Special Issues		
Dn " Voice of Sea" Generation Mechanism PDF (Size: 671KB) PP. 116-128 DOI: 10.4236/ijg.2013.41012 Author(s) Indrew G. Semenov RESTRACT hysical model of self-sustained infrasonic air oscillations related to interaction of fresh gale with chopp as surface generated by gale and detected far from its region. Interaction of wind with moving sea wave rests is shown to be of weaker impact on oscillations in far field. For wind velocity in the range from 100 to 0.6 of wind velocity, while air self-sustained scillations velocity amplitude can run up in the range from 0.2 to 0.3 of wind velocity. Wind intensification avators frequencies are transformed due to air attached mass and volume elasticity additional ransformation under wind influence in the range from 1.05 to 1.9 with respect to resonance frequencies at the cavity air oscillation in atmosphere is expected to increase with wind velocity cubed, the cavity air oscillation velocity-linear with wind velocity. Wind velocity threshold of an order of 25 - 30 vis overcome is necessary to observe effect. Spectral peaks on resonance frequencies in the range 0.7 .5 Hz are expected in effect observation. Infrasonic signals observable far from whole gale in atmosphere,	I JG> Vol.4 No.1, January 2013				Special Issues Guideline		
About IJG News About IJG News About IJG News Frequently Asked Questions requently Asked Questions Recommend to Peers Recommend to Peers Recommend to Library Contact Us Downloads: 165,284 Visits: 394,263 Sponsors, Associates Links >>	OPEN©ACCESS On "Voice of Sea" Generation Mechanism					IJG Subscription	
About IJG News About IJG News About IJG News About IJG News About IJG News About IJG News About IJG News Frequently Asked Ouestions rests is proposed. It is shown that air infrasonic oscillations are expected inside moving 3D cavities in rests is shown to be of weaker impact on oscillations in far field. For wind velocity in the range from 10 to ower than their quarter wavelength resonance frequencies. In the course of oscillations effective wind elocity applied to cavities can achieve value from 0.4 to 0.6 of wind velocity. Wind intensification east. Amplitude can run up in the range from 0.2 to 0.3 of wind velocity. Wind intensification ransformation under wind influence in the range from 1.05 to 1.9 with respect to resonance frequencies at est. Amplitude of self-sustained oscillation in atmosphere is expected to increase with wind velocity cubed, while cavity air oscillation velocity-linear with wind velocity. Wind velocity threshold of an order of 25 - 30 ox so vercome is necessary to observe effect. Spectral peaks on resonance frequencies in the range 0.7 - .5 Hz are expected in effect observation. Infrasonic signals observable far from whole gale in atmosphere,	PDF (Size: 671KB) PP. 116-128 DOI: 10.4236/ijg.2013.41012				Most popular papers in IJG		
hysical model of self-sustained infrasonic air oscillations related to interaction of fresh gale with choppy ea surface is proposed. It is shown that air infrasonic oscillations are expected inside moving 3D cavities in ea surface generated by gale and detected far from its region. Interaction of wind with moving sea wave rests is shown to be of weaker impact on oscillations in far field. For wind velocity in the range from 10 to 0 m/s deepest cavities acquire resonance frequencies. In the course of oscillations effective wind elocity applied to cavities can achieve value from 0.4 to 0.6 of wind velocity, while air self-sustained scillations velocity amplitude can run up in the range from 0.2 to 0.3 of wind velocity. Wind intensification eads to oscillations frequencies are transformed due to air attached mass and volume elasticity additional ransformation under wind influence in the range from 1.05 to 1.9 with respect to resonance frequencies at est. Amplitude of self-sustained oscillation in atmosphere is expected to increase with wind velocity cubed, while cavity air oscillation velocity-linear with wind velocity. Wind velocity threshold of an order of 25 - 30 n/s overcome is necessary to observe effect. Spectral peaks on resonance frequencies in the range 0.7 - .5 Hz are expected in effect observation. Infrasonic signals observable far from whole gale in atmosphere,	Author(s) Andrew G. Semenov				About IJG News		
Recommend to Peers Recommend to Library Contact Us Contact Us Contact Us Recommend to Library Contact Us Contact Us Conta	ABSTRACT Physical model of self-sustained infrasonic air oscillations related to interaction of fresh gale with choppy				Frequently Asked Questions		
0 m/s deepest cavities acquire resonance frequencies in the range of 3.0 - 0.7 Hz, <i>i.e.</i> frequencies much ower than their quarter wavelength resonance frequencies. In the course of oscillations effective wind elocity applied to cavities can achieve value from 0.4 to 0.6 of wind velocity, while air self-sustained scillations velocity amplitude can run up in the range from 0.2 to 0.3 of wind velocity. Wind intensification eads to oscillations frequency decrease and oscillation energy losses increase with wind velocity cubed. travities natural frequencies are transformed due to air attached mass and volume elasticity additional ransformation under wind influence in the range from 1.05 to 1.9 with respect to resonance frequencies at est. Amplitude of self-sustained oscillation in atmosphere is expected to increase with wind velocity cubed, while cavity air oscillation velocity-linear with wind velocity. Wind velocity threshold of an order of 25 - 30 n/s overcome is necessary to observe effect. Spectral peaks on resonance frequencies in the range 0.7 .5 Hz are expected in effect observation. Infrasonic signals observable far from whole gale in atmosphere,	sea surface is proposed. It is shown that air infrasonic oscillations are expected inside moving 3D cavities in sea surface generated by gale and detected far from its region. Interaction of wind with moving sea wave				Recommend to Peers		
elocity applied to cavities can achieve value from 0.4 to 0.6 of wind velocity, while air self-sustained scillations velocity amplitude can run up in the range from 0.2 to 0.3 of wind velocity. Wind intensification bads to oscillations frequency decrease and oscillation energy losses increase with wind velocity cubed. Eavities natural frequencies are transformed due to air attached mass and volume elasticity additional fransformation under wind influence in the range from 1.05 to 1.9 with respect to resonance frequencies at est. Amplitude of self-sustained oscillation in atmosphere is expected to increase with wind velocity cubed, while cavity air oscillation velocity-linear with wind velocity. Wind velocity threshold of an order of 25 - 30 m/s overcome is necessary to observe effect. Spectral peaks on resonance frequencies in the range 0.75 Hz are expected in effect observation. Infrasonic signals observable far from whole gale in atmosphere,	40 m/s deepest cavities acquire resonance frequencies in the range of 3.0 - 0.7 Hz, <i>i.e.</i> frequencies much lower than their quarter wavelength resonance frequencies. In the course of oscillations effective wind velocity applied to cavities can achieve value from 0.4 to 0.6 of wind velocity, while air self-sustained				Recommend to Library		
adds to oscillations frequency decrease and oscillation energy losses increase with wind velocity cubed. Eavities natural frequencies are transformed due to air attached mass and volume elasticity additional ransformation under wind influence in the range from 1.05 to 1.9 with respect to resonance frequencies at est. Amplitude of self-sustained oscillation in atmosphere is expected to increase with wind velocity cubed, while cavity air oscillation velocity-linear with wind velocity. Wind velocity threshold of an order of 25 - 30 m/s overcome is necessary to observe effect. Spectral peaks on resonance frequencies in the range 0.7 - .5 Hz are expected in effect observation. Infrasonic signals observable far from whole gale in atmosphere,					Contact Us		
est. Amplitude of self-sustained oscillation in atmosphere is expected to increase with wind velocity cubed, while cavity air oscillation velocity-linear with wind velocity. Wind velocity threshold of an order of 25 - 30 m/s overcome is necessary to observe effect. Spectral peaks on resonance frequencies in the range 0.7 - .5 Hz are expected in effect observation. Infrasonic signals observable far from whole gale in atmosphere, Links >>	leads to oscillations frequency decrease	and oscillation energ	y losses increase with wi	nd velocity cubed.	Downloads:	165,284	
n/s overcome is necessary to observe effect. Spectral peaks on resonance frequencies in the range 0.7 - .5 Hz are expected in effect observation. Infrasonic signals observable far from whole gale in atmosphere, Links >>		8	•	•	Visits:	394,263	
eginning from third harmonic 2.1 - 7.5 Hz are regarded as phenomenon signs.	while cavity air oscillation velocity-linear with wind velocity. Wind velocity threshold of an order of 25 - 30 m/s overcome is necessary to observe effect. Spectral peaks on resonance frequencies in the range 0.7 - 2.5 Hz are expected in effect observation. Infrasonic signals observable far from whole gale in atmosphere, sea water thickness and earth crust on self-sustained oscillation frequency and its harmonics frequencies beginning from third harmonic 2.1 - 7.5 Hz are regarded as phenomenon signs.				Sponsors, Associates, a Links >>		

KEYWORDS

Infrasound; Sea Surface-Atmosphere Interaction; Whole Gale; Wind Velocity; Oscillation Frequency; Sea Noise; Self-Sustained Oscillations

Cite this paper

A. Semenov, "On " Voice of Sea" Generation Mechanism," *International Journal of Geosciences*, Vol. 4 No. 1, 2013, pp. 116-128. doi: 10.4236/ijg.2013.41012.

References

- V. V. Shuleikin, " On Sea Voice," Comptes Rendus Aca- demie des Sciences USSR, Vol. 3, No. 8, 1935, p. 259.
- [2] N. N. Andreev, " On Sea Voice," Comptes Rendus Aca demie des Sciences USSR, Vol. 23, No. 7, 1939, p. 625.
- [3] V. V. Shuleikin, " Physics of the Sea," Nauka, Moscow, 1968.
- [4] B. P. Konstantinov, " Hydrodynamic Sound Generation and Sound Propagation in Bounded Media," Nauka, Len ingrad.
- [5] L. M. Milne-Thomson, " Theoretical Hydrodynamics," McMillan, London, 1960.
- [6] H. Lamb, "Hydrodynamics," Gostechizdat, Moscow, 1947.
- [7] L. Prandtl and O. G. Tietjens, "Fundamentals of Hydro and Aeromechanics," McGraw-Hill, New York, 1934.
- [8] L. D. Landau and E. M. Lifshitz, " Course of Theoretical Physics," Hydrodynamics Pergamon, Oxford,

1975.

- [9] L. G. Loitsiansky, " Mechanics of Fluid and Gas," Science, Moscow, 1987.
- [10] D. I. Blokhintsev, " Acoustics in Moving Inhomogeneous Media," Taylor Francis, London, 1998.
- [11] M. A. Isakovich, " General Acoustics," Nauka, Moscow, 1973.
- [12] O. M. Phillips, " Upper Ocean Dynamics," Gidrometeoiz dat, Leningrad, 1980.
- [13] P. M. Morse and K. U. Ingard, "Theoretical Acoustics," Mac-Grow Hill, New York, 1968.
- [14] M. A. Isakovich and B. F. Kuryanov, " To the Theory of Low Frequency Ocean Noises," Soviet Physics Acoustics, Vol. 16, No. 1, 1970, p. 62.
- [15] J. P. Lysanov, " To Space and Time Sea Roughness Corre lation Evaluation," Oceanology, Vol. 15, No. 3, 1975, p. 405.
- J. W. Miles, " On the generation of surface waves by the shear flow," Journal of Fluid Mechanics, Vol. 6, No. 4, 1959, pp. 568-582. doi:10.1017/S0022112059000830
- [17] N. Curle, "The Influence of Solid Boundaries upon Aero dynamic Sound," Proceedings of the Royal Society A, Vol. 231, 1955, p. 505.
- [18] H. S. Ribner, "Reflection, Transmission and Amplification of Sound by Moving Medium," Journal of the Acoustical Society of America, Vol. 29, 1957, p. 435.
- [19] J. I. Gromov, A. V. Rimsky-Korsakov and A. G. Semenov, "Resonator in Finite Amplitude Sound Wave Field," Soviet Physics Acoustics, Vol. 23, No. 1, 1977, p. 160.
- [20] A. D. Lapin and M. A. Mironov, "Rigid Plane Cut Conductance Streamlined by Flow," Acoustical Physics, Vol. 49, No. 1, 2003, p. 98.
- [21] D. Ronnenberger, " The Acoustical Impedance of Holes in the Wall of Flow Ducts," Journal of Sound and Vibration, Vol. 24, No. 1, 1972, p. 133.
- [22] M. S. Howe, " Acoustics of Fluid-Structure Interactions," Cambridge Monographs on Mechanics, Cambridge, 2008.
- [23] M. A. Mironov, "Hole Impedance in Screen between Moving Medium and Medium at Rest," Acoustical Physics, Vol. 28, No. 4, 1982, p. 528.
- [24] V. F. Kopyev, M. A. Mironov and V. S. Solntseva, "Possible Generation Mechanism of 'Sea Voice'," Proceed ings of the 12 Brekhovskih' s Conference on Ocean Acous tics, Moscow, 2009, p. 272.
- [25] A. V. Rimsky-Korsakov and A. G, Semenov, " Self-Sus tained Oscillations of Gaseous Ring Jet," Acoustical Physics, Vol. 42, No. 1, 1996, p. 116.
- [26] A. Michalke, "The Instability of Free Shear Layers. A Survey on the State of Art," Deutsche Luft und Raumfahrt, FB 70-51, 1970.
- [27] T. Kh. Sedelnikov, " Self-sustained Noise Generation in Gaseous Jet Outflow," Nauka, Moscow, 1971.
- [28] T. Kh. Sedelnikov and A. G. Semenov, "Wiener-Hopf Technique Application to Problem of Semi-Infinite Su personic Jet Noise Generation," Proceedings of Acoustics Institute, No. 4, 1968, p. 76.