

Geoscientific Model Development

An interactive open-access journal of the European Geosciences Union

\Box'	\sim			\sim	1.1	rr	2	C
L'		U	J	U	u		a	15

EGU.eu

Manuscript tracking

About

Editorial board Articles GMD

- Recent final revised papers
- Volumes and issues
- Special issues
- Full text search
- Title and author search

Articles GMDD

Subscribe to alerts

Peer review

For authors

For reviewers

User I D						
Password						
New user? Lo	ost login?					

Follow @EGU_GMD

Journal metrics

Geosci. Model Dev., 5, 289-297, 2012 www.geosci-model-dev.net/5/289/2012/ doi:10.5194/gmd-5-289-2012 © Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.

Article

Metrics

Related Articles

09 Mar 2012

Set-up and preliminary results of mid-Pliocene climate simulations with CAM3.1

Q. Yan^{1,2}, Z. S. Zhang^{1,3}, H. J. Wang^{1,4}, Y. Q. Gao^{1,5}, and W. P. Zheng⁶
¹Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
²Graduate School of Chinese Academy of Sciences, Beijing 100049, China
³Bjerknes Centre for Climate Research, UniResearch, Bergen 5007, Norway
⁴Climate Change Research Center, Chinese Academy of Sciences, Beijing 100029, China
⁵Nansen Environmental and Remote Sensing Center/Bjerknes Centre for Climate Research, Bergen 5006, Norway
⁶State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Received: 08 November 2011 – Published in Geosci. Model Dev. Discuss.: 05 December 2011 Revised: 08 February 2012 – Accepted: 08 February 2012 – Published: 09 March 2012 In this study, we use an atmospheric general circulation model (AGCM) called CAM3.1 to simulate the mid-Pliocene climate with the PRISM3D boundary conditions. The simulations show that the global annual mean surface air temperature (SAT) increases by 2.0 ° C in the mid-Pliocene compared with the pre-industrial temperature. The greatest warming occurs at high latitudes of both hemispheres, with little change in SAT at low latitudes. The equator-to-pole SAT gradient is reduced in the mid-Pliocene simulation. The annual mean precipitation is enhanced by 3.6% of the pre-industrial value. However, the changes in precipitation are greater at low latitudes than at high latitudes.

Citation: Yan, Q., Zhang, Z. S., Wang, H. J., Gao, Y. Q., and Zheng, W. P.: Set-up and preliminary results of mid-Pliocene climate simulations with CAM3.1, Geosci. Model Dev., 5, 289-297, doi:10.5194/gmd-5-289-2012, 2012.

