Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

| EGU Journals | Contact

Online Library ACP

- Recent Final Revised **Papers**
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Comment on a Paper

lindexed

■ Volumes and Issues
■ Contents of Issue 1

Atmos. Chem. Phys., 8, 63-71, 2008 www.atmos-chem-phys.net/8/63/2008/ © Author(s) 2008. This work is licensed under a Creative Commons License.

Technical Note: Recipe for monitoring of total ozone with a precision of around 1 DU applying mid-infrared solar absorption spectra

M. Schneider and F. Hase IMK-ASF, Forschungszentrum Karlsruhe, Karlsruhe, Germany

Abstract. Mid-infrared solar absorption spectra recorded by a state-of-theart ground-based FTIR system have the potential to provide precise total ${\rm O}_3$ amounts. The currently best-performing retrieval approaches use a combination of small and broad spectral O_3 windows between 780 and 1015 cm⁻¹. We show that for these approaches the uncertainties of the temperature profile are by far the major error sources. We demonstrate that a joint optimal estimation of temperature and O₃ profiles widely eliminates this error. The improvements are documented by an extensive theoretical error estimation. Our results suggest that mid-infrared FTIR measurements can provide total O₃ amounts with a precision of around 1 DU, placing this method among the most precise ground-based O₃ monitoring techniques. We recapitulate the requirements on the instrumental hardware and on the retrieval that are needed to achieve this high precision.

■ Final Revised Paper (PDF, 2838 KB)
■ Discussion Paper (ACPD)

Citation: Schneider, M. and Hase, F.: Technical Note: Recipe for monitoring of total ozone with a precision of around 1 DU applying mid-infrared solar absorption spectra, Atmos. Chem. Phys., 8, 63-71, 2008. ■ Bibtex ■ EndNote ■ Reference Manager

Library Search Author Search

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & **Background Information**

Recent Papers

01 | ACPD, 03 Nov 2008: Technical Note: A new method for the Lagrangian tracking of pollution plumes from source to receptor using gridded model output

02 | ACPD, 03 Nov 2008: Characterisation of episodic aerosol types over the Australian continent

03 | ACPD, 03 Nov 2008: Evidence of mineral dust altering cloud microphysics and precipitation

04 | ACP, 03 Nov 2008: