

| Copernicus.org | EGU.eu |

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Comment on a Paper

| EGU Journals | Contact

Library Search	₩.
Author Search	₩

- COSIS Deactivation
- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & **Background Information**

Recent Papers

01 | ACP, 10 Nov 2008: Organic composition of carbonaceous aerosols in an aged prescribed fire plume

02 | ACP, 10 Nov 2008: Airborne in-situ measurements of vertical, seasonal and latitudinal distributions of carbon dioxide over Europe

03 | ACP, 06 Nov 2008: Retrieval of stratospheric aerosol size information from OSIRIS limb scattered sunlight spectra

nuclei (CCN) and the size distributions of CCN/CN (CN: condensation nuclei) ratios at supersaturations (SSs) of 0.097, 0.27, 0.58, and 0.97% at Jeju Island, Korea during March-April 2005. We made simultaneous measurements of aerosol inorganic ions, water-soluble organic carbon (WSOC), organic carbon (OC), and elemental carbon (EC) in $PM_{2.5}$. The CCN/CN ratios increased with increasing particle diameter, and the diameter at CCN/CN=0.5 was defined as D_{50} . D_{50} represents the activation dry diameter of atmospheric particles. The average D_{50} at SS=0.097% and 0.97% was 136 ± 17 nm and 31 ± 3 nm, respectively. The temporal variation of D_{50} at SS=0.097% was correlated with the mass fraction of water-soluble components (inorganic ions + WSOC), indicating that the temporal variation of CCN activity was mainly controlled by changes in the water-soluble components fraction. The critical dry diameter (D_{crit}), which is the threshold dry diameter for CCN activation, was calculated from the observed aerosol chemical compositions by Köhler theory for comparison with D_{50} . The D_{50} at SS=0.097% was correlated $(r^2=0.48)$ with calculated D_{crit} , although D_{crit} was larger than D_{50} by 20– 29% on average. The systematic difference between D_{50} and D_{crit} could be caused by the size dependence of the aerosol chemical compositions or surface tension lowering caused by the mixing of water-soluble organic compounds. This difference corresponds to a 27±14% uncertainty in the CCN number concentration estimated from the observed particle number size distribution.

■ Final Revised Paper (PDF, 1380 KB) ■ Discussion Paper (ACPD)

Citation: Kuwata, M., Kondo, Y., Miyazaki, Y., Komazaki, Y., Kim, J. H., Yum, S. S., Tanimoto, H., and Matsueda, H.: Cloud condensation nuclei activity at Jeju Island, Korea in spring 2005, Atmos. Chem. Phys., 8, 2933-2948, 2008. Bibtex EndNote Reference Manager