Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu |

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Comment on a Paper

Volumes and Issues Contents of Issue 13

Atmos. Chem. Phys., 7, 3411-3424, 2007 www.atmos-chem-phys.net/7/3411/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License

Simulation of hurricane response to suppression of warm rain by sub-micron aerosols

D. Rosenfeld¹, A. Khain¹, B. Lynn¹, and W. L. Woodley² ¹Institute of Earth Sciences, The Hebrew University of Jerusalem, Israel ²Woodley Weather Consultants, 11 White Fir Court, Littleton 80127, USA

Abstract. The feasibility of hurricane modification was investigated for hurricane Katrina using the Weather Research and Forecasting Model (WRF). The possible impact of seeding of clouds with submicron cloud condensation nuclei (CCN) on hurricane structure and intensity as measured by nearly halving of the area covered by hurricane force winds was simulated by "turning-off" warm rain formation in the clouds at Katrina's periphery (where wind speeds were less than 22 m s⁻¹). This simplification of the simulation of aerosol effects is aimed at evaluating the largest possible response. This resulted in the weakening of the hurricane surface winds compared to the "non-seeded" simulated storm during the first 24 h within the entire tropical cyclone (TC) area compared to a control simulation without warm rain suppression. Later, the seeding-induced evaporative cooling at the TC periphery led to a shrinking of the eye and hence to some increase in the wind within the small central area of the TC. Yet, the overall strength of the hurricane, as defined by the area covered by hurricane force winds, decreased in response to the suppressed warm rain at the periphery, as measured by a 25% reduction in the radius of hurricane force winds. In a simulation with warm rain suppression throughout the hurricane, the radius of the hurricane force winds was reduced by more than 42%, and although the diameter of the eye shrunk even further the maximum winds weakened. This shows that the main mechanism by which suppressing warm rain weakens the TC is the low level evaporative cooling of the un-precipitated cloud drops and the added cooling due to melting of precipitation that falls from above.

■ <u>Final Revised Paper</u> (PDF, 3250 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Rosenfeld, D., Khain, A., Lynn, B., and Woodley, W. L.: Simulation of hurricane response to suppression of warm rain by sub-micron aerosols, Atmos. Chem. Phys., 7, 3411-3424,

2007. Bibtex EndNote Reference Manager

| EGU Journals | Contact

Search ACP	
Library Search	₩
Author Search	•

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP. 11 Nov 2008: Influence of future air pollution mitigation strategies on total aerosol radiative forcing

02 | ACP, 10 Nov 2008: Airborne in-situ measurements of vertical, seasonal and latitudinal distributions of carbon dioxide over Europe

03 | ACP, 10 Nov 2008: Organic composition of carbonaceous aerosols in an aged prescribed fire plume