# Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu |

| EGU Journals | Contact

### Home

## Online Library ACP

- Recent Final Revised **Papers**
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

## Online Library ACPD

Alerts & RSS Feeds

General Information

**Submission** 

Production

Subscription

### Comment on a Paper



lindexed



PORTICO

■ Volumes and Issues
■ Contents of Issue 16
■ Special Issue

Atmos. Chem. Phys., 8, 4759-4786, 2008

www.atmos-chem-phys.net/8/4759/2008/

© Author(s) 2008. This work is distributed

under the Creative Commons Attribution 3.0 License.

## Validation of ACE-FTS N<sub>2</sub>O measurements

- K. Strong<sup>1</sup>, M. A. Wolff<sup>1</sup>, T. E. Kerzenmacher<sup>1</sup>, K. A. Walker<sup>1,2</sup>,
- P. F. Bernath<sup>2,3</sup>, T. Blumenstock<sup>4</sup>, C. Boone<sup>2</sup>, V. Catoire<sup>5</sup>, M. Coffey<sup>6</sup>, M. De Mazière<sup>7</sup>, P. Demoulin<sup>8</sup>, P. Duchatelet<sup>8</sup>, E. Dupuy<sup>2</sup>, J. Hannigan<sup>6</sup>,
- M. Höpfner<sup>4</sup>, N. Glatthor<sup>4</sup>, D. W. T. Griffith<sup>9</sup>, J. J. Jin<sup>10</sup>, N. Jones<sup>9</sup>,
- K. Jucks<sup>11</sup>, H. Kuellmann<sup>12</sup>, J. Kuttippurath<sup>12,\*</sup>, A. Lambert<sup>13</sup>,
- E. Mahieu<sup>8</sup>, J. C. McConnell<sup>10</sup>, J. Mellqvist<sup>14</sup>, S. Mikuteit<sup>4</sup>,
- D. P. Murtagh<sup>14</sup>, J. Notholt<sup>12</sup>, C. Piccolo<sup>15</sup>, P. Raspollini<sup>16</sup>, M. Ridolfi<sup>17</sup>,
- C. Robert<sup>5</sup>, M. Schneider<sup>4</sup>, O. Schrems<sup>18</sup>, K. Semeniuk<sup>10</sup>, C. Senten<sup>7</sup>, G. P. Stiller<sup>4</sup>, A. Strandberg<sup>14</sup>, J. Taylor<sup>1</sup>, C. Tétard<sup>19</sup>, M. Toohey<sup>1</sup>,
- J. Urban<sup>14</sup>, T. Warneke<sup>12</sup>, and S. Wood<sup>20</sup>
- <sup>1</sup>Department of Physics, University of Toronto, Toronto, Ontario, Canada
- <sup>2</sup>Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
- <sup>3</sup>Department of Chemistry, University of York, York, UK
- <sup>4</sup>Forschungszentrum Karlsruhe and University of Karlsruhe, Institute for Meteorology and Climate Research (IMK), Karlsruhe, Germany
- <sup>5</sup>Laboratoire de Physique et Chimie de L'Environment CNRS Université d'Orléans, Orléans, France
- <sup>6</sup>National Center for Atmospheric Research, Boulder, CO, USA
- <sup>7</sup>Belgian Institute for Space Aeronomy, Brussels, Belgium
- <sup>8</sup>Institute of Astrophysics and Geophysics, University of Liège, Liège, Belgium
- <sup>9</sup>School of Chemistry, University of Wollongong, Wollongong, Australia
- <sup>10</sup>Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada
- <sup>11</sup>Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
- <sup>12</sup>Institute for Environmental Physics, University of Bremen, Bremen, Germany
- <sup>13</sup>Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- <sup>14</sup>Department of Radio and Space Science, Chalmers University of Technology, Gothenburg, Sweden
- <sup>15</sup>Department of Physics, University of Oxford, Oxford, UK
- <sup>16</sup>Institute of Applied Physics "Nello Carrara", National Research Center, Firenze,
- <sup>17</sup>Dipartimento di Chimica Fisica e Inorganica, Università di Bologna, Bologna,
- <sup>18</sup> Alfred Wegener Institute for Polar and Marine Research, Bremerhaven,
- <sup>19</sup>Laboratoire d'Optique Atmosphérique, Université des sciences et technologies de Lille, Villeneuve d'Ascq, France
- <sup>20</sup>National Institute of Water and Atmospheric Research Ltd., Lauder, New Zealand \*now at: LMD/CNRS Ecole Polytechnique, Palaiseau Cedex, France

Abstract. The Atmospheric Chemistry Experiment (ACE), also known as SCISAT, was launched on 12 August 2003, carrying two instruments that measure vertical profiles of atmospheric constituents using the solar occultation technique. One of these instruments, the ACE Fourier Transform Spectrometer (ACE-FTS), is measuring volume mixing ratio (VMR) profiles of nitrous oxide (N<sub>2</sub>O) from the upper troposphere to the lower mesosphere at a vertical resolution of about 3-4 km. In this study, the quality of the ACE-FTS version 2.2 N<sub>2</sub>O data is assessed through comparisons with



Library Search

Author Search

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & **Background Information**

## **Recent Papers**

01 | ACPD, 17 Nov 2008: Carbonaceous aerosols at urban influenced sites in Norway

02 | ACPD, 17 Nov 2008: Introduction: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) integrating aerosol research from nano to global scales

03 | ACPD, 17 Nov 2008: Statistical analysis of nonmethane hydrocarbon variability at a European background location (Jungfraujoch, Switzerland)

coincident measurements made by other satellite, balloon-borne, aircraft, and ground-based instruments. These consist of vertical profile comparisons with the SMR, MLS, and MIPAS satellite instruments, multiple aircraft flights of ASUR, and single balloon flights of SPIRALE and FIRS-2, and partial column comparisons with a network of ground-based Fourier Transform InfraRed spectrometers (FTIRs). Between 6 and 30 km, the mean absolute differences for the satellite comparisons lie between -42 ppbv and +17 ppbv, with most within ±20 ppbv. This corresponds to relative deviations from the mean that are within ±15%, except for comparisons with MIPAS near 30 km, for which they are as large as 22.5%. Between 18 and 30 km, the mean absolute differences for the satellite comparisons are generally within ±10 ppbv. From 30 to 60 km, the mean absolute differences are within  $\pm 4$  ppbv, and are mostly between -2 and +1 ppbv. Given the small  $N_2O$  VMR in this region, the relative deviations from the mean are therefore large at these altitudes, with most suggesting a negative bias in the ACE-FTS data between 30 and 50 km. In the comparisons with the FTIRs, the mean relative differences between the ACE-FTS and FTIR partial columns (which cover a mean altitude range of 14 to 27 km) are within ±5.6% for eleven of the twelve contributing stations. This mean relative difference is negative at ten stations, suggesting a small negative bias in the ACE-FTS partial columns over the altitude regions compared. Excellent correlation (R=0.964) is observed between the ACE-FTS and FTIR partial columns, with a slope of 1.01 and an intercept of -0.20 on the line fitted to the data.

## ■ Final Revised Paper (PDF, 675 KB) ■ Discussion Paper (ACPD)

Citation: Strong, K., Wolff, M. A., Kerzenmacher, T. E., Walker, K. A., Bernath, P. F., Blumenstock, T., Boone, C., Catoire, V., Coffey, M., De Mazière, M., Demoulin, P., Duchatelet, P., Dupuy, E., Hannigan, J., Höpfner, M., Glatthor, N., Griffith, D. W. T., Jin, J. J., Jones, N., Jucks, K., Kuellmann, H., Kuttippurath, J., Lambert, A., Mahieu, E., McConnell, J. C., Mellqvist, J., Mikuteit, S., Murtagh, D. P., Notholt, J., Piccolo, C., Raspollini, P., Ridolfi, M., Robert, C., Schneider, M., Schrems, O., Semeniuk, K., Senten, C., Stiller, G. P., Strandberg, A., Taylor, J., Tétard, C., Toohey, M., Urban, J., Warneke, T., and Wood, S.: Validation of ACE-FTS N<sub>2</sub>O measurements, Atmos. Chem. Phys., 8, 4759-4786,