Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu |

| EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

indexed

PORTICO

■ Volumes and Issues
■ Contents of Issue 2

Atmos. Chem. Phys., 7, 443-451, 2007 www.atmos-chem-phys.net/7/443/2007/
© Author(s) 2007. This work is licensed under a Creative Commons License.

Water-side turbulence enhancement of ozone deposition to the ocean

C. W. Fairall¹, D. Helmig², L. Ganzeveld³, and J. Hare^{4,*}

- ¹NOAA Earth Science Research Laboratory, Boulder, CO, USA
- ²INSTAAR, University of Colorado, Boulder, CO, USA
- ³Max-Planck Institute for Chemistry, Mainz, Germany
- ⁴CIRES, University of Colorado, Boulder, CO, USA
- *now at: SOLAS International Project Office, University of East Anglia, Norwich, UK

Abstract. A parameterization for the deposition velocity of an ocean-reactive atmospheric gas (such as ozone) is developed. The parameterization is based on integration of the turbulent-molecular transport equation (with a chemical source term) in the ocean. It extends previous work that only considered reactions within the oceanic molecular sublayer. The sensitivity of the ocean-side transport to reaction rate and wind forcing is examined. A more complicated case with a much more reactive thin surfactant layer is also considered. The full atmosphere-ocean deposition velocity is obtained by matching boundary conditions at the interface. For an assumed ocean reaction rate of $10^3 \, \mathrm{s^{-1}}$, the enhancement for ozone deposition by oceanic turbulence is found to be up to a factor of three for meteorological data obtained in a recent cruise off the East Coast of the U.S.

■ Final Revised Paper (PDF, 582 KB) ■ Discussion Paper (ACPD)

Citation: Fairall, C. W., Helmig, D., Ganzeveld, L., and Hare, J.: Water-side turbulence enhancement of ozone deposition to the ocean, Atmos. Chem. Phys., 7, 443-451, 2007. ■ <u>Bibtex</u> ■ <u>EndNote</u> ■ <u>Reference Manager</u>

Search ACF

Library Search

Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 28 Nov 2008: Estimating surface CO₂ fluxes from space-borne CO₂ dry air mole fraction observations using an ensemble Kalman Filter

02 | ACPD, 28 Nov 2008: Comparison of tropospheric chemistry schemes for use within global models

 $03\mid ACP,\ 28\ Nov\ 2008:$ Measurements of HNO_3 and N_2O_5 using ion drift-chemical ionization mass spectrometry during the MILAGRO/MCMA-2006 campaign