

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

Volumes and Issues Contents of Issue 2

Atmos. Chem. Phys., 7, 485-493, 2007 www.atmos-chem-phys.net/7/485/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

Persistence and photochemical decay of springtime total ozone anomalies in the Canadian Middle Atmosphere Model

S. Tegtmeier^{1,*} and T. G. Shepherd²

¹Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany ²Department of Physics, University of Toronto, Toronto, Ontario, Canada * now at: Department of Physics, University of Toronto, Canada

Abstract. The persistence and decay of springtime total ozone anomalies over the entire extratropics (midlatitudes plus polar regions) is analysed using results from the Canadian Middle Atmosphere Model (CMAM), a comprehensive chemistry-climate model. As in the observations, interannual anomalies established through winter and spring persist with very high correlation coefficients (above 0.8) through summer until early autumn, while decaying in amplitude as a result of photochemical relaxation in the quiescent summertime stratosphere. The persistence and decay of the ozone anomalies in CMAM agrees extremely well with observations, even in the southern hemisphere when the model is run without heterogeneous chemistry (in which case there is no ozone hole and the seasonal cycle of ozone is quite different from observations). However in a version of CMAM with strong vertical diffusion, the northern hemisphere anomalies decay far too rapidly compared to observations. This shows that ozone anomaly persistence and decay does not depend on how the springtime anomalies are created or on their magnitude, but reflects the transport and photochemical decay in the model. The seasonality of the long-term trends over the entire extratropics is found to be explained by the persistence of the interannual anomalies, as in the observations, demonstrating that summertime ozone trends reflect winter/spring trends rather than any change in summertime ozone chemistry. However this mechanism fails in the northern hemisphere midlatitudes because of the relatively large impact, compared to observations, of the CMAM polar anomalies. As in the southern hemisphere, the influence of polar ozone loss in CMAM increases the midlatitude summertime loss, leading to a relatively weak seasonal dependence of ozone loss in the Northern Hemisphere compared to the observations.

■ Final Revised Paper (PDF, 487 KB) ■ Discussion Paper (ACPD)

Citation: Tegtmeier, S. and Shepherd, T. G.: Persistence and photochemical decay of springtime total ozone anomalies in the Canadian Middle Atmosphere Model, Atmos. Chem. Phys., 7, 485-493, 2007. <u>Bibtex</u> <u>EndNote</u> <u>Reference Manager</u>

| EGU Journals | Contact

Search ACP	
Library Search	₩
Author Search	bb

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 28 Nov 2008: Estimating surface CO_2 fluxes from space-borne CO_2 dry air mole fraction observations using an ensemble Kalman Filter

02 | ACPD, 28 Nov 2008: Comparison of tropospheric chemistry schemes for use within global models

03 | ACP, 28 Nov 2008: Measurements of HNO_3 and N_2O_5 using ion drift-chemical ionization mass spectrometry during the MILAGRO/MCMA-2006 campaign