

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

■ Volumes and Issues ■ Contents of Issue 3 Atmos. Chem. Phys., 7, 887-897, 2007 www.atmos-chem-phys.net/7/887/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

Application of absolute principal component analysis to size distribution data: identification of particle origins

T. W. Chan^{1,*} and M. Mozurkewich¹

¹Department of Chemistry and Centre for Atmospheric Chemistry, York University, Toronto, Ontario, Canada

*now at: Environment Canada, Toronto, Ontario, Canada

Abstract. Absolute principal component analysis can be applied, with suitable modifications, to atmospheric aerosol size distribution measurements. This method quickly and conveniently reduces the dimensionality of a data set. The resulting representation of the data is much simpler, but preserves virtually all the information present in the original measurements. Here we demonstrate how to combine the simplified size distribution data with trace gas measurements and meteorological data to determine the origins of the measured particulate matter using absolute principal component analysis. We have applied the analysis to four different sets of field measurements that were conducted at three sites in southern Ontario. Several common factors were observed at all the sites; these were identified as photochemically produced secondary aerosol particles, regional pollutants (including accumulation mode aerosol particles), and trace gas variations associated with boundary layer dynamics. Each site also exhibited a factor associated specifically with that site: local industrial emissions in Hamilton (urban site), processed nucleation mode particles at Simcoe (polluted rural site), and transported fine particles at Egbert (downwind from Toronto).

■ <u>Final Revised Paper</u> (PDF, 2269 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Chan, T. W. and Mozurkewich, M.: Application of absolute principal component analysis to size distribution data: identification of particle origins, Atmos. Chem. Phys., 7, 887-897, 2007. Bibtex EndNote Reference Manager | EGU Journals | Contact

Search ACP Library Search Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 01 Dec 2008: New constraints on terrestrial and oceanic sources of atmospheric methanol

02 | ACP, 01 Dec 2008: Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations

03 | ACPD, 28 Nov 2008: Atmospheric oxygen and carbon dioxide observations from two European coastal stations 2000–2005: continental influence, trend changes and APO climatology