Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

Volumes and Issues Contents of Issue 10

Atmos. Chem. Phys., 7, 2575-2584, 2007 www.atmos-chem-phys.net/7/2575/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

Interannual variability of the stratospheric wave driving during northern winter

A. J. Haklander^{1,2}, P. C. Siegmund³, and H. M. Kelder^{1,2} ¹Eindhoven University of Technology (TUE), Department of Applied Physics, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

²Royal Netherlands Meteorological Institute (KNMI), Climate and Seismology Department, Climate Observation Division, P.O. Box 201, 3730 AE De Bilt, The Netherlands

³Royal Netherlands Meteorological Institute (KNMI), Climate and Seismology Department, Climate and Chemistry Division, P.O. Box 201, 3730 AE De Bilt, The Netherlands

Abstract. The strength of the stratospheric wave driving during northern winter is often quantified by the January–February mean poleward eddy heat flux at 100 hPa, averaged over 40°-80° N (or a similar area and period). Despite the dynamical and chemical relevance of the wave driving, the causes for its variability are still not well understood. In this study, ERA-40 reanalysis data for the period 1979–2002 are used to examine several factors that significantly affect the interannual variability of the wave driving. The total poleward heat flux at 100 hPa is poorly correlated with that in the troposphere, suggesting a decoupling between 100 hPa and the troposphere. However, the individual zonal wave-1 and wave-2 contributions to the wave driving at 100 hPa do exhibit a significant coupling with the troposphere, predominantly their stationary components. The stationary wave-1 contribution to the total wave driving significantly depends on the latitude of the stationary wave-1 source in the troposphere. The results suggest that this dependence is associated with the varying ability of stationary wave-1 activity to enter the tropospheric waveguide at mid-latitudes. The wave driving anomalies are separated into three parts: one part due to anomalies in the zonal correlation coefficient between the eddy temperature and eddy meridional wind, another part due to anomalies in the zonal eddy temperature amplitude, and a third part due to anomalies in the zonal eddy meridional wind amplitude. It is found that year-to-year variability in the zonal correlation coefficient between the eddy temperature and the eddy meridional wind is the most dominant factor in explaining the year-to-year variability of the poleward eddy heat flux.

■ Final Revised Paper (PDF, 728 KB) ■ Discussion Paper (ACPD)

Citation: Haklander, A. J., Siegmund, P. C., and Kelder, H. M.: Interannual variability of the stratospheric wave driving during northern winter, Atmos. Chem. Phys., 7, 2575-2584, 2007. Bibtex EndNote Reference Manager

| EGU Journals | Contact

Copernicus Publications

Search ACP	
Library Search	•
Author Search	•

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 10 Dec 2008: Sulfur isotope analyses of individual aerosol particles in the urban aerosol at a central European site (Mainz, Germany)

02 | ACP, 10 Dec 2008: Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China

03 | ACPD, 10 Dec 2008: What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?