Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union | Copernicus.org | EGU.eu | # | EGU Journals | Contact ### Home ## Online Library ACP - Recent Final Revised **Papers** - Volumes and Issues - Special Issues - Library Search - Title and Author Search ## Online Library ACPD Alerts & RSS Feeds General Information **Submission** Production Subscription #### Comment on a Paper indexed PORTICO ■ Volumes and Issues ■ Contents of Issue 16 ■ Special Issue Atmos. Chem. Phys., 7, 4329-4373, 2007 www.atmos-chem-phys.net/7/4329/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. # An overview of snow photochemistry: evidence, mechanisms and impacts A. M. Grannas¹, A. E. Jones², J. Dibb³, M. Ammann⁴, C. Anastasio⁵, H. J. Beine⁶, M. Bergin⁷, J. Bottenheim⁸, C. S. Boxe⁹, G. Carver¹⁰, G. Chen¹¹, J. H. Crawford¹¹, F. Dominé¹², M. M. Frey^{12,13}, M. I. Guzmán^{9,14}, D. E. Heard¹⁵, D. Helmig¹⁶, M. R. Hoffmann⁹, R. E. Honrath¹⁷, L. G. Huey¹⁸, M. Hutterli², H. W. Jacobi¹⁹, P. Klán²⁰, B. Lefer²⁹, J. McConnell²¹, J. Plane¹⁵, R. Sander²², J. Savarino¹², P. B. Shepson²³, W. R. Simpson²⁴, J. R. Sodeau²⁵, R. von Glasow^{26,27}, R. Weller¹⁹, E. W. Wolff², and T. Zhu²⁸ ¹Department of Chemistry, Villanova University, Villanova, PA 19085, USA ²British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 OET, UK ³Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA ⁴Laboratory for Radio- and Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland ⁵Department of Land, Air {&} Water Resources, University of California at Davis, Davis, CA 95616, USA ⁶Consiglio Nazionale delle Ricerche – Istituto Inquinamento Atmosferico (C.N.R. – I.I.A); Via Salaria Km 29,3; 00016 Monterotondo Scalo, Roma, Italy ⁷School of Civil and Environmental Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA ⁸Air Quality Research Branch, Environment Canada, Downsview, Ontario, Canada ⁹W. M. Keck Laboratories, California Institute of Technology, Pasadena, CA 91125, USA ¹⁰Center for Atmospheric Sciences, Department of Chemistry, Cambridge University, Lensfield Road, Cambridge, UK ¹¹NASA Langley Research Center, Hampton, VA 23681, USA ¹²Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS/Université Joseph Fourier-Grenoble, St Martin d'Hères Cedex, France ¹³School of Engineering, University of California-Merced, Merced, CA 95343, USA ¹⁴Currently at School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA ¹⁵School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK ¹⁶Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA ¹⁷Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI 49931, USA ¹⁸School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30033, USA ¹⁹Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, ²⁰Masaryk University, Department of Chemistry, Brno, Czech Republic ²¹Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada ²²Air Chemistry Department, Max-Planck Institute of Chemistry, P.O. Box 3060, 55020 Mainz, Germany ²³Dept. of Chemistry and Department of Earth and Atmospheric Sciences, Purdue Univ., West Lafayette, IN 47907, USA ²⁴Department of Chemistry and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775-6160, USA Library Search Author Search - Sister Journals AMT & GMD - Financial Support for Authors - Journal Impact Factor - Public Relations & **Background Information** #### **Recent Papers** 01 | ACP, 17 Dec 2008: Characterizing ozone production and response under different meteorological conditions in Mexico City 02 | ACP, 17 Dec 2008: Significant impact of the East Asia monsoon on ozone seasonal behavior in the boundary layer of Eastern China and the west Pacific 03 | ACP, 17 Dec 2008: Carbonyl sulfide in air extracted from a South Pole ice core: a 2000 year record ²⁵Department of Chemistry, University College Cork, Cork, Ireland Abstract. It has been shown that sunlit snow and ice plays an important role in processing atmospheric species. Photochemical production of a variety of chemicals has recently been reported to occur in snow/ice and the release of these photochemically generated species may significantly impact the chemistry of the overlying atmosphere. Nitrogen oxide and oxidant precursor fluxes have been measured in a number of snow covered environments, where in some cases the emissions significantly impact the overlying boundary layer. For example, photochemical ozone production (such as that occurring in polluted mid-latitudes) of 3-4 ppbv/day has been observed at South Pole, due to high OH and NO levels present in a relatively shallow boundary layer. Field and laboratory experiments have determined that the origin of the observed NO_x flux is the photochemistry of nitrate within the snowpack, however some details of the mechanism have not yet been elucidated. A variety of low molecular weight organic compounds have been shown to be emitted from sunlit snowpacks, the source of which has been proposed to be either direct or indirect photo-oxidation of natural organic materials present in the snow. Although myriad studies have observed active processing of species within irradiated snowpacks, the fundamental chemistry occurring remains poorly understood. Here we consider the nature of snow at a fundamental, physical level; photochemical processes within snow and the caveats needed for comparison to atmospheric photochemistry; our current understanding of nitrogen, oxidant, halogen and organic photochemistry within snow; the current limitations faced by the field and implications for the future. ■ Final Revised Paper (PDF, 3679 KB) ■ Discussion Paper (ACPD) Citation: Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329-4373, 2007. ²⁶Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany ²⁷School of Environmental Sciences, University of East Anglia, Norwich, UK ²⁸College of Environmental Sciences, Peking University, Beijing 100871, China ²⁹Department of Geosciences, University of Houston, TX 77204, USA