| Copernicus.org | EGU.eu |

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

■ Volumes and Issues ■ Contents of Issue 24 Atmos. Chem. Phys., 7, 6145-6159, 2007 www.atmos-chem-phys.net/7/6145/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

Technical note: A new day- and night-time Meteosat Second Generation Cirrus Detection Algorithm MeCiDA

W. Krebs, H. Mannstein, L. Bugliaro, and B. Mayer Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Abstract. A new cirrus detection algorithm for the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG), MeCiDA, is presented. The algorithm uses the seven infrared channels of SEVIRI and thus provides a consistent scheme for cirrus detection at day and night. MeCiDA combines morphological and multi-spectral threshold tests and detects optically thick and thin ice clouds. The thresholds were determined by a comprehensive theoretical study using radiative transfer simulations for various atmospheric situations as well as by manually evaluating actual satellite observations. The cirrus detection has been optimized for mid- and high latitudes but it could be adapted to other regions as well. The retrieved cirrus masks have been validated by comparison with the Moderate Resolution Imaging Spectroradiometer (MODIS) Cirrus Reflection Flag. To study possible seasonal variations in the performance of the algorithm, one scene per month of the year 2004 was randomly selected and compared with the MODIS flag. 81% of the pixels were classified identically by both algorithms. In a comparison of monthly mean values for Europe and the North-Atlantic MeCiDA detected 29.3% cirrus coverage, while the MODIS SWIR cirrus coverage was 38.1%. A lower detection efficiency is to be expected for MeCiDA, as the spatial resolution of MODIS is considerably better and as we used only the thermal infrared channels in contrast to the MODIS algorithm which uses infrared and visible radiances. The advantage of MeCiDA compared to retrievals for polar orbiting instruments or previous geostationary satellites is that it permits the derivation of quantitative data every 15 min, 24 h a day. This high temporal resolution allows the study of diurnal variations and life cycle aspects. MeCiDA is fast enough for near real-time applications.

■ Final Revised Paper (PDF, 3652 KB) ■ Discussion Paper (ACPD)

Citation: Krebs, W., Mannstein, H., Bugliaro, L., and Mayer, B.: Technical note: A new day- and night-time Meteosat Second Generation Cirrus Detection Algorithm MeCiDA, Atmos. Chem. Phys., 7, 6145-6159, 2007. Bibtex EndNote Reference Manager

| EGU Journals | Contact

Search ACP Library Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 23 Dec 2008: Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer

02 | ACPD, 23 Dec 2008: Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

03 | ACP, 23 Dec 2008: Corrigendum to "Modeling the effect of plume-rise on the transport of carbon monoxide over Africa with NCAR CAM" published in