Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu |

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

■ Volumes and Issues ■ Contents of Issue 1 Atmos. Chem. Phys., 6, 173-185, 2006

www.atmos-chem-phys.net/6/173/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License.

A case study of pyro-convection using transport model and remote sensing data

R. Damoah¹, N. Spichtinger¹, R. Servranckx², M. Fromm³, E. W. Eloranta⁴, I. A. Razenkov⁴, P. James⁵, M. Shulski⁶, C. Forster⁷, and A. Stohl⁷ ¹Department of Ecology, Technical University of Munich, Freising, Germany ²Canadian Meteorological Centre, Montreal, Canada ³Naval Research Laboratory, Washington, D.C., USA ⁴University of Wisconsin-Madison, Madison, WI, USA

⁵Hadley Centre for Climate Prediction and Research, Exeter, UK

⁶Alaska Climate Research Center, Fairbanks, AK, USA

⁷Norwegian Institute for Air Research, Kjeller, Norway

Abstract. Summer 2004 saw severe forest fires in Alaska and the Yukon Territory that were mostly triggered by lightning strikes. The area burned $(>2.7\times10^6$ ha) in the year 2004 was the highest on record to date in Alaska. Pollutant emissions from the fires lead to violation of federal standards for air quality in Fairbanks.

This paper studies deep convection events that occurred in the burning regions at the end of June 2004. The convection was likely enhanced by the strong forest fire activity (so-called pyro-convection) and penetrated into the lower stratosphere, up to about 3 km above the tropopause. Emissions from the fires did not only perturb the UT/LS locally, but also regionally. POAM data at the approximate location of Edmonton (53.5° N, 113.5° W) show that the UT/LS aerosol extinction was enhanced by a factor of 4 relative to unperturbed conditions. Simulations with the particle dispersion model FLEXPART with the deep convective transport scheme turned on showed transport of forest fire emissions into the stratosphere, in qualitatively good agreement with the enhancements seen in the POAM data. A corresponding simulation with the deep convection scheme turned off did not result in such deep vertical transport. Lidar measurements at Wisconsin on 30 June also show the presence of substantial aerosol loading in the UT/LS, up to about 13 km. In fact, the FLEXPART results suggest that this aerosol plume originated from the Yukon Territory on 25 June

■ <u>Final Revised Paper</u> (PDF, 3795 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Damoah, R., Spichtinger, N., Servranckx, R., Fromm, M., Eloranta, E. W., Razenkov, I. A., James, P., Shulski, M., Forster, C., and Stohl, A.: A case study of pyro-convection using transport model and remote sensing data, Atmos. Chem. Phys., 6, 173-185, 2006. Bibtex EndNote Reference Manager | EGU Journals | Contact

Search ACP Library Search Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 23 Dec 2008: Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer

02 | ACPD, 23 Dec 2008: Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

03 | ACP, 23 Dec 2008: Corrigendum to "Modeling the effect of plume-rise on the transport of carbon monoxide over Africa with NCAR CAM" published in

