Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

Copernicus.org | EGU.eu

under a Creative Commons License.

| EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

indexed

Volumes and Issues Contents of Issue 2 Special Issue Atmos. Chem. Phys., 6, 447-469, 2006 www.atmos-chem-phys.net/6/447/2006/
© Author(s) 2006. This work is licensed

Dry and wet deposition of inorganic nitrogen compounds to a tropical pasture site (Rondônia, Brazil)

- I. Trebs¹, L. L. Lara², L. M. M. Zeri³, L. V. Gatti⁴, P. Artaxo⁵, R. Dlugi⁶, J. Slanina⁷, M. O. Andreae¹, and F. X. Meixner¹
- ¹Max Planck Institute for Chemistry, Biogeochemistry Department, P.O. Box 3060, 55020, Mainz, Germany
- ²Centro de Energia Nuclear na Agricultura (CENA), Laboratorio de Ecologia Isotópica, Universidade de São Paulo (USP), Av. Centenario, 303 13400-970, Piracicaba, São Paulo, SP, Brazil
- ³Max Planck Institute for Biogeochemistry, Department Biogeochemical Processes, Hans-Knöll-Straße 10, 07745 Jena, Germany
- ⁴Instituto de Pesquisas Energéticas e Nucleares, CQMA, Atmospheric Chemistry Laboratory, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP 055508-900, São Paulo, SP, Brazil
- ⁵Instituto de Física, Universidade de São Paulo (USP), Rua do Matão, Travessa R, 187, CEP 05508-900, São Paulo, SP, Brazil
- 6 Working Group Atmospheric Processes (WAP), Gernotstrasse 11, 80804 Munich, Germany
- ⁷Peking University, College of Environmental Sciences, Beijing 100871, China

Abstract. The input of nitrogen (N) to ecosystems has increased dramatically over the past decades. While total (wet + dry) N deposition has been extensively determined in temperate regions, only very few data sets of N wet deposition exist for tropical ecosystems, and moreover, reliable experimental information about N dry deposition in tropical environments is lacking. In this study we estimate dry and wet deposition of inorganic N for a remote pasture site in the Amazon Basin based on insitu measurements. The measurements covered the late dry (biomass burning) season, a transition period and the onset of the wet season (clean conditions) (12 September to 14 November 2002) and were a part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke, Aerosols, Clouds, Rainfall, and Climate) 2002 campaign. Ammonia (NH₃), nitric acid (HNO₃), nitrous acid (HONO), nitrogen dioxide (NO_2) , nitric oxide (NO), ozone (O_3) , aerosol ammonium (NH_4^+) and aerosol nitrate (NO3) were measured in real-time, accompanied by simultaneous meteorological measurements. Dry deposition fluxes of NO₂ and HNO₃ are inferred using the "big leaf multiple resistance approach" and particle deposition fluxes are derived using an established empirical parameterization. Bi-directional surface-atmosphere exchange fluxes of NH₃ and HONO are estimated by applying a "canopy compensation point model". N dry and wet deposition is dominated by NH_3 and NH_4^+ , which is largely the consequence of biomass burning during the dry season. The grass surface appeared to have a strong potential for daytime NH₃ emission, owing to high canopy compensation points, which are related to high surface temperatures and to direct NH₃ emissions from cattle excreta.

NO₂ also significantly accounted for N dry deposition, whereas HNO₃,

Search ACP

Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

O1 | ACP, 23 Dec 2008: Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer

02 | ACPD, 23 Dec 2008: Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

03 | ACP, 23 Dec 2008: Corrigendum to "Modeling the effect of plume-rise on the transport of carbon HONO and N-containing aerosol species were only minor contributors. Ignoring NH_3 emission from the vegetation surface, the annual net N deposition rate is estimated to be about -11 kgN ha^{-1} yr $^{-1}$. If on the other hand, surface-atmosphere exchange of NH_3 is considered to be bidirectional, the annual net N budget at the pasture site is estimated to range from -2.15 to -4.25 kgN ha^{-1} yr $^{-1}$.

■ Final Revised Paper (PDF, 800 KB) ■ Discussion Paper (ACPD)

Citation: Trebs, I., Lara, L. L., Zeri, L. M. M., Gatti, L. V., Artaxo, P., Dlugi, R., Slanina, J., Andreae, M. O., and Meixner, F. X.: Dry and wet deposition of inorganic nitrogen compounds to a tropical pasture site (Rondônia, Brazil), Atmos. Chem. Phys., 6, 447-469, 2006. Bibtex EndNote Reference Manager