Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu |

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

■ Volumes and Issues ■ Contents of Issue 6

Atmos. Chem. Phys., 6, 1549-1565, 2006 www.atmos-chem-phys.net/6/1549/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License.

Evaluation of MIPAS ozone fields assimilated using a new algorithm constrained by isentropic tracer advection

M. N. Juckes

British Atmospheric Data Centre, SSTD, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, UK

Abstract. A new data assimilation algorithm, using the isentropic advection equation, is applied to MIPAS and SBUV measurements of stratospheric ozone. The system is solved separately on each isentropic level, with neither vertical advection nor chemical reactions represented. The results are validated against HALOE, POAM III, SAGE II & III, OSIRIS and ozone sonde data. The new assimilation algorithm has the accuracy of the Kalman smoother but is, for the systems studied here with up to 200 000 variables per time step and 61 million control variables in total, many orders of magnitude less computationally expensive. The analysis produced minimises a single penalty function evaluated over an analysis window of over one month. The cost of the analysis is found to increase nearly linearly with the number of control variables. Compared with over 800 profiles from Electrochemical Concentration Cell sondes at 29 sites the analysis is found to be merely 0.1% high at 420 K, rising to 0.4% at 650 K. Comparison against the other satellites imply that the bias remains small up to 1250 K (38 km) and then increases to around -10% at 1650 K (44 km). Between 20 and 35 km the root-mean-square difference relative to HALOE, SAGE II & III, and POAM is in the 5 to 10% range, with larger discrepancies relative to other instruments. Outside this height range rms differences are generally larger, though agreement with HALOE remains good up to 50 km. The assimilation has closer agreement to independent observations than found in direct near-neighbour comparisons between profiles, demonstrating that the assimilation can add value to the observations.

■ <u>Final Revised Paper</u> (PDF, 1896 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Juckes, M. N.: Evaluation of MIPAS ozone fields assimilated using a new algorithm constrained by isentropic tracer advection, Atmos. Chem. Phys., 6, 1549-1565, 2006. Bibtex **D** EndNote **D** Reference Manager | EGU Journals | Contact

Search ACP	
Library Search	•
Author Search	•

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 07 Jan 2009: Chemistry and transport of pollution over the Gulf of Mexico and the Pacific: Spring 2006 INTEX-B Campaign overview and first results

02 | ACP, 07 Jan 2009: Cloud processing, cloud evaporation and Angström exponent

03 | ACP, 07 Jan 2009: Mixing processes and exchanges in the tropical and the subtropical UT/LS