Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu |

| EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

ISI indexed

■ Volumes and Issues
■ Contents of Issue 7

Atmos. Chem. Phys., 6, 1835-1841, 2006 www.atmos-chem-phys.net/6/1835/2006/
© Author(s) 2006. This work is licensed under a Creative Commons License.

Large decadal scale changes of polar ozone suggest solar influence

B.-M. Sinnhuber 1 , P. von der Gathen 2 , M. Sinnhuber 1 , M. Rex 2 , G. König-Langlo 3 , and S. J. Oltmans 4

¹ Institute of Environmental Physics, University of Bremen, Bremen, Germany ² Alfred-Wegener-Institute for Polar and Marine Research, Research Unit Potsdam, Potsdam, Germany

 3 Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany 4 NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, Colorado, USA

Abstract. Long-term measurements of polar ozone show an unexpectedly large decadal scale variability in the mid-stratosphere during winter. Negative ozone anomalies are strongly correlated with the flux of energetic electrons in the radiation belt, which is modulated by the 11-year solar cycle. The magnitude of the observed decadal ozone changes ($\approx 20\%$) is much larger than any previously reported solar cycle effect in the atmosphere up to this altitude. The early-winter ozone anomalies subsequently propagate downward into the lower stratosphere and may even influence total ozone and meteorological conditions during spring. These findings suggest a previously unrecognized mechanism by which solar variability impacts on climate through changes in polar ozone.

■ Final Revised Paper (PDF, 312 KB) ■ Discussion Paper (ACPD)

Citation: Sinnhuber, B.-M., von der Gathen, P., Sinnhuber, M., Rex, M., König-Langlo, G., and Oltmans, S. J.: Large decadal scale changes of polar ozone suggest solar influence, Atmos. Chem. Phys., 6, 1835-1841, 2006. ■ Bibtex ■ EndNote ■ Reference Manager

Search ACP

Library Search
Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 08 Jan 2009: Ambient new particle formation parameter indicates potential rise in future events

02 | ACPD, 08 Jan 2009: Changing sources and environmental factors reduce the rates of decline of organochlorine pesticides in the Arctic Atmosphere

03 | ACP, 08 Jan 2009: The SCOUT-03 Darwin Aircraft Campaign: rationale and meteorology