

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

Atmos. Chem. Phys., 6, 2355-2366, 2006 www.atmos-chem-phys.net/6/2355/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License.

Partitioning between the inorganic chlorine reservoirs HCI and ${\rm CIONO}_2$ during the Arctic winter 2005 from the ACE-FTS

G. Dufour^{1,*}, R. Nassar¹, C. D. Boone¹, R. Skelton¹, K. A. Walker¹, P. F. Bernath¹, C. P. Rinsland², K. Semeniuk³, J. J. Jin³, J. C. McConnell³, and G. L. Manney^{4,5}

¹Department of Chemistry, University of Waterloo, Ontario, Canada
 ²NASA Langley Research Center, Hampton, Virginia, USA
 ³Department of Space Science and Engineering, York University, Ontario, Canada

⁴NASA Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA

 ⁵New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
 * now at: Laboratoire de Météorologie Dynamique/Institut Pierre Simon Laplace, Palaiseau, France

Abstract. From January to March 2005, the Atmospheric Chemistry Experiment high resolution Fourier transform spectrometer (ACE-FTS) on SCISAT-1 measured many of the changes occurring in the Arctic (50–80° N) lower stratosphere under very cold winter conditions. Here we focus on the partitioning between the inorganic chlorine reservoirs HCl and CIONO₂ and their activation into CIO. The simultaneous measurement of these species by the ACE-FTS provides the data needed to follow chlorine activation during the Arctic winter and the recovery of the CI-reservoir species CIONO₂ and HCl. The time evolution of HCl, CIONO₂ and CIO as well as the partitioning between the two reservoir molecules agrees well with previous observations and with our current understanding of chlorine activation during Arctic winter. The results of a chemical box model are also compared with the ACE-FTS measurements and are generally consistent with the measurements.

■ <u>Final Revised Paper</u> (PDF, 1166 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Dufour, G., Nassar, R., Boone, C. D., Skelton, R., Walker, K. A., Bernath, P. F., Rinsland, C. P., Semeniuk, K., Jin, J. J., McConnell, J. C., and Manney, G. L.: Partitioning between the inorganic chlorine reservoirs HCI and CIONO₂ during the Arctic winter 2005 from the ACE-FTS, Atmos. Chem. Phys., 6, 2355-2366, 2006. Bibtex EndNote Reference Manager | EGU Journals | Contact

Search ACP Library Search Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 09 Jan 2009: High formation of secondary organic aerosol from the photo-oxidation of toluene

02 | ACP, 09 Jan 2009: The effects of experimental uncertainty in parameterizing air-sea gas exchange using tracer experiment data

03 | ACPD, 08 Jan 2009: Airborne observations of a subvisible midlevel Arctic ice cloud: microphysical and radiative characterization

04 | ACPD, 08 Jan 2009: