

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

Volumes and Issues Contents of Issue 1

Atmos. Chem. Phys., 5, 85-95, 2005 www.atmos-chem-phys.net/5/85/2005/ © Author(s) 2005. This work is licensed under a Creative Commons License.

Intercomparison between Lagrangian and Eulerian simulations of the development of mid-latitude streamers as observed by CRISTA

F. Khosrawi^{1,3}, J.-U. Grooß¹, R. Müller¹, P. Konopka¹, W. Kouker², R. Ruhnke², T. Reddmann², and M. Riese¹

¹Institut für Chemie und Dynamik der Geosphäre I: Stratosphäre (ICG-I), Forschungszentrum Jülich, 52425 Jülich, Germany

²Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany

³now at: Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden

Abstract. During the CRISTA-1 mission three pronounced fingerlike structures reaching from the lower latitudes to the mid-latitudes, so-called streamers, were observed in the measurements of several trace gases in early November 1994. A simulation of these streamers in previous studies employing the KASIMA (Karlsruhe Simulation Model of the Middle Atmosphere) and ROSE (Research on Ozone in the Stratosphere and its Evolution) model, both being Eulerian models, show that their formation is due to adiabatic transport processes. Here, the impact of mixing on the development of these streamers is investigated. These streamers were simulated with the CLaMS model (Chemical Lagrangian Model of the Stratosphere), a Lagrangian model, using N₂O as long-lived tracer. Using several different initialisations the results were compared to the KASIMA simulations and CRISTA (Cryogenic Infrared Spectrometer and Telescope for the Atmosphere) observations. Further, since the KASIMA model was employed to derive a 9-year climatology, the quality of the reproduction of streamers from such a study was tested by the comparison of the KASIMA results with CLaMS and CRISTA. The streamers are reproduced well for the Northern Hemisphere in the simulations of CLaMS and KASIMA for the 6 November 1994. However, in the CLaMS simulation a stronger filamentation is found while larger discrepancies between KASIMA and CRISTA were found especially for the Southern Hemisphere. Further, compared to the CRISTA observations the mixing ratios of N₂O are in general underestimated in the KASIMA simulations. An improvement of the simulations with KASIMA was obtained for a simulation time according to the length of the CLaMS simulation. To quantify the differences between the simulations with CLaMS and KASIMA, and the CRISTA observations, the probability density function technique (PDF) is used to interpret the tracer distributions. While in the PDF of the KASIMA simulation the small scale structures observed by CRISTA are smoothed out due to the numerical diffusion in the model, the PDFs derived from CRISTA observations can be reproduced by CLaMS by optimising the mixing parameterisation. Further, this procedure gives information on small-scale variabilities not resolved by the CRISTA observations.

| EGU Journals | Contact

Search ACP Library Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 04 Feb 2009: Reinterpreting aircraft measurements in anisotropic scaling turbulence

02 | ACP, 04 Feb 2009: Global temperature estimates in the troposphere and stratosphere: a validation study of COSMIC/FORMOSAT-3 measurements

03 | ACPD, 04 Feb 2009: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol ■ Final Revised Paper (PDF, 4527 KB) ■ Discussion Paper (ACPD)

Citation: Khosrawi, F., Grooß, J.-U., Müller, R., Konopka, P., Kouker, W., Ruhnke, R., Reddmann, T., and Riese, M.: Intercomparison between Lagrangian and Eulerian simulations of the development of mid-latitude streamers as observed by CRISTA, Atmos. Chem. Phys., 5, 85-95, 2005. Bibtex EndNote Reference Manager